Condensats de Bose-Einstein, champs évanescents et champs radio-fréquences

Thèse présentée par Hélène Perrin pour obtenir son
Habilitation à Diriger la Recherche

Cette habilitation porte sur une série d’expériences faites avec comme leitmotiv la condensation de Bose-Einstein à deux dimensions. Pour confiner très fortement les atomes dans une direction, nous avons utilisé deux approches différentes. Dans un premier temps, nous avons projeté d’utiliser deux champs évanescents, ce qui permet de réaliser des gradients de champ très importants. Avec cet objectif, nous avons produit un condensat et mis au point une méthode de transfert vers le piège à ondes évanescentes. La production d’un condensat à 3 mm seulement d’une surface a constitué une première. Nous avons réalisé une série d’expériences impliquant une seule onde évanescente, qui ont montré que la surface du diélectrique présentait une rugosité trop importante pour confiner efficacement les atomes en dimension 2. Cette étude nous a permis en revanche de caractériser très précisément l’interaction entre les atomes et le champ diffusé par les défauts de surface. Nos expériences ont confirmé quantitativement la théorie de Carsten Henkel et al., ce qui est un point important pour les expériences, de plus en plus nombreuses, menées à proximité directe d’une surface. Nous avons également montré que la diffraction était toujours clairement observable malgré la forte diffusion, lors du rebond d’un condensat sur un miroir modulé.
Dans un second temps, sur la proposition d’Oliver Zobay et Barry Garraway, nous avons mis au point une nouvelle approche pour confiner les atomes dans des potentiels très anisotropes. La combinaison d’un champ radiofréquence (RF) et d’un champ magnétique statique résulte en un potentiel adiabatique dont la géométrie peut être largement contrôlée, y compris dynamiquement. Ces potentiels RF permettent de réaliser une « bulle » à atomes, un double puits, un anneau… Nous nous sommes intéressés principalement à produire un piège quasi bidimensionnel dans l’épaisseur de la bulle. Ces pièges sont compatibles avec les condensats de Bose-Einstein, et les atomes peuvent être refroidis par évaporation in situ. Nos premières expériences impliquant des champs radiofréquence ont eu un impact important dans la communauté des atomes froids, en particulier pour les expériences sur puce. A la suite de nos travaux, de nombreuses équipes ont utilisé cette technique avec succès.

Membres du jury
Michèle Leduc  LKB, ENS/CNRS
Christopher Foot  University of Oxford  Rapporteur  
Rudolf Grimm  Universität Innsbruck  Rapporteur  
Christoph Westbrook  LCFIO, Institut d’Optique/CNRS Rapporteur  
Christian Chardonnet LPL, Université Paris 13/CNRS
Vincent Lorent  LPL, Université Paris 13/CNRS

Soutenance : Le 04 Décembre 2008 à 14h30

CNRS UMR 7538
Téléphone +33 1 49 40 34 00
99, av. Jean-Baptiste Clément
93430 Villetaneuse, France