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Engineering Dirac points with 
ultracold fermions in a tunable optical lattice

tunneling imbalance
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Due to the finite momentum width of the cloud, Bloch oscillations 
along the qx-axis allow us to also resolve this displacement of the 
Dirac points when tuning the tunneling imbalance.
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After one full Bloch cycle we measure the total fraction ξ of 
atoms in the 2nd Brillouin zone after adiabatic ramp down of 
the lattice and 15 ms time of flight.
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tuning the mass of Dirac fermions

384.7(1) MHz 

We identify the peak position with the situation of a va-
nishing site offset. We find good agreement with an inde-
pendent calibration (Raman-Nath diffraction on 
                 87Rb: 388(4) MHz ).

Varying the frequency detuning δ between the X and X lat-
tice beam  changes the relative positioning of the chequer-
board and square lattice potentials. This changes the energy 
offset Δ between the A and B sublattices and hence breaks 
invesion symmetry. As a consequence,  the Dirac fermions 
aquire a tunable mass.

A variation of the lattice intensities leads to an imbalance of the 
tunneling links. This moves the Dirac points in the Brillouin zone.

Approaching a critical lattice anisotropy the Dirac points move to the corner 
of the Brillouin zone, where they merge and a gap opens. At this point the 
dispersion relation is quadratic along the qy-axis and linear along qx. For 
half-filled 2D-systems this corresponds to a Lifshitz transition from a semi-
metal to a band insulating state.

Applying a potential gradient in the 
perpendicular direction also allows 
to detect the Dirac points far in the 
honeycomb regime.

By scanning the potentials  VX and VX 
we map out the topological transition 
to the honeycomb lattice, in excellent 
agreement with ab initio calculations.
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Outlook
- Combination of various lattice geometries with interactions
- Interferometric detection of Berry phase
- Topologically ordered states

L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu and T.Esslinger, Nature 483, 302–305 (2012)

Transferred fraction agrees 
with theory based on universal 
Hamiltonian: 
L.K. Lim, J.N.Fuchs and G. Mon-
tambaux, Phys. Rev. Lett. 108, 
175303 (2012) 
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Dirac points

two Dirac points located inside
the Brillouin zone

square shaped Brillouin zone

existence of Dirac points resilient
upon variation of lattice parameters

control over sublattice energy offset
(inversion symmetry)
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two-site unit cell

Initial distribution centered around q=0

Atoms loaded into tunable optical 
lattice of variable depths VX, VX   and VY

Spin polarized Fermi gas of about 
60.000 40K atoms in |F=9/2,mF=-9/2>

Bloch oscillations and interband transfers

Experimental procedure initial, t=0 after full Bloch cycle
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V X,X,Y  = (3.6, 0.28, 1.8) E R
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Application of potential gradient and 
detection of quasimomentum distribu-
tion after one Bloch period
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The properties of solid-state materials are 
critically influenced by the topological pro-
perties of their band structure. A prime exa-
mple is the honeycomb lattice of graphene, 
where the presence of Dirac points leads to 
massless electrons causing a drastic increase 
in carrier mobility. 
Compared to realisations in solid state mate-
rials, the approach with cold atoms offers a 
very flexible approach and new access to 
this type of systems. 

In our experiment we subject the atoms to 
an optical lattice of tunable geometry crea-
ted by interfering laser beams.  It allows us 
to continously and dynamically tune bet-
ween different lattice geometries including 
chequerboard, triangular, dimer, honeycomb 
and coupled 1D chain configurations. dimer
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