
Creation of Negative Temperature
States in Optical Lattices

The Apparatus Experimental Realization

Feshbach Induced Mott Insulator

Coherence Length

BEC with Tunable Interactions

Stability

dipole trap + 
optical lattice
dipole trap + 

Rb & K dispensers
differential pumping 
& magnetic transport
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MOT chamber and coils 

quadrupole trap

Experimental Sequence:

● MOT

● magnetic transport

● evap. in plugged quadrupole trap

● evap. in crossed dipole trap

● loading to blue lattice

● blue-detuned light to prevent Majorana losses in center

● tapered amplifier with 1W at 760 nm

● cloud centered on symmetry axis,

 coils also usable for Feshbach field

Species:

● 87Rb (bosonic)

● 39K (bosonic)

● 40K (fermionic)

Crossed Dipole Trap (1064 nm):

● 2 elliptical horizontal beams

● round vertical beam 

● tight vertical confinement

● good overlap of K and Rb

Blue Lattice (736.65 nm):

● anti-trapping potential

● control of K vs. Rb mobility

● creation of random defects

 by “freezing out” K

Independent control of lattice depth and harmonic confinement!

Vacuum chamber

Crossed optical dipole trap and blue-detuned lattice

Optically plugged quadrupole trap
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39K BEC of 100  103 atoms at a condensate fraction of above 90%.

Cooling scheme for 39K:

●   Sympathetic MW evaporation in plugged quadrupole trap

●   Sympathetic cooling in dipole trap on interspecies Feshbach resonance

●   Direct evaporative cooling in dipole trap on intraspecies Feshbach resonance

both atoms in absolute ground state:

39K-39K Feshbach resonance
39K-87Rb Feshbach resonance

Qualitative agreement with QMC
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Negative Absolute Temperature for Motional Degrees of Freedom

Energy bounds of the Bose-Hubbard Hamiltonian

Scheme for creation of negative temperature states

What is negative absolute temperature?

Thermalization at negative temperature in the
attractive BHM leads to condensation around q=π/d !

Rapp et al., PRL 105, 220405 (2010)
Allard P. Mosk PRL 95, 040403 (2005)
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adiabatic instantaneous instantaneous instantaneous adiabatic

|U| / J

Ji > 0

Quench of interaction U and external confinement V of a bosonic Mott insulator:

T>0: Hamiltonian must be
        bounded from below
T<0: Hamiltonian must be
        bounded from above

Quasi-momentum distribution

U,V < 0 necessary for
upper bound!

Phase diagram and negative pressure

density matrix:

Phase diagram for repulsive BHM at T>0
=

PD for attractive BHM at T<0 with shifted q

dispersion:

sequence:

momentum shift: 

general stability condition:

energy differential:

negative pressure is stabilized by
negative temperature!

stable condensate at attractive interactions!

Experimental sequence and results

macroscopic occupation of
maximum kinetic energy!

● fitted temperature:
 T = -2.2J/kB (+2.7J/kB) (overestimate)

● theor. 2D superfluid transition (QMC): 
 |TBKT| = 1.8J/kB (PRA 77, 015602 (2008))

● theor. condensation temperature in 
 2D harmonic trap (non-interacting):
 |TC| = 3.4(2)J/kB

very good reproduction with
Bose-Einstein distribution!

lC: coherence length

Coherence lifetime vs. horizontal trap frequency

visibility:

fit: convolution with Gaussian

final negative (positive) temperature

state prepared in 2D:

● avoiding gravitation effects

● enabling strong anti-trapping potentials

initially strong interactions to prevent

double occupancies

Lattice depth (Er)
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Preliminary, see also M.J. Mark et.al. arXiv: 1107.1803
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Bose-Einstein distribution,
non-interacting and homogeneous:

modelling 1D distribution after finite TOF with Gaussian envelope times interference term: 

background signal: coherence length 3-4 lattice sites (underestimate)

● lifetime exceeding
 600ms!

● same lifetime as for
 positive temperature

● non-ideal confinement
 leads to dephasing

system size: R = 5, 15, 25, 35, 45lC = 1, 2, 3, 4, 5, 9, 35

Coherence lifetime vs. interaction

● lifetime decreasing with interaction
 for both positive and negative
 temperatures

● scaling qualitatively consistent with
 three-body loss rates


