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Foreword

The 23rd International Conference on Atomic Physics takes place in Ecole Polytechnique, a high 
level graduate school close to Paris.

Following the tradition of ICAP, the conference presents an outstanding programme of invited 

Ultracold gases and Bose Einstein condensates,
Ultracold Fermi gases,
Fundamental atomic tests and measurements,
Precision measurements, atomic clocks and interferometers,
Quantum information and simulations with atoms and ions,
Quantum optics and cavity QED with atoms,
Atoms and molecules in optical lattices,
From two-body to many-body systems,
Ultrafast phenomena and free electron lasers,
Beyond atomic physics (biophysics, optomechanics...).

The program includes 31 invited talks and 13 ‘hot topic’ talks. 
This book of abstracts gathers the contributions of these talks and of all posters, organized in three 

sessions. 
The proceedings of the conference will be published online in open access by the “European  

On behalf of the committees, we would like to welcome you in Palaiseau, and to wish you an excit-
ing conference.
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Monte Carlo simulations of an unconventional phase transition for a 2d dimerized 

quantum Heisenberg model 

Active control of magnetic %eld and gradient in ultracold experiments

Random laser in cold atoms

Information-theoretic properties of Rydberg atoms 

Fault of interferometer passbands equidistance with its length variation 

Enabling technologies for integrated atom chips

 

164

164

165

165

166

166
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Tuesday 24 July, 11.00am-2.45pm

Topic A - Precision measurements

Tu-001

Tu-002

Tu-003

Tu-004

Tu-005

Tu-006

Tu-007

Tu-008

Tu-009

Tu-010

Tu-011

01- Atom interferometry
Matter-wave interferometry with charged particles

Limit to spin squeezing in !nite temperature Bose-Einstein condensates

Quantum metrology with a scanning probe atom interferometer

A trapped atom interferometer for short range forces measurements

Long-lived coherence of an interacting Bose-Einstein condensate

Entanglement and optimized interferometric phase measurement

Gravitational output-coupling of an atom laser

Interferometry with chip-based atom lasers in microgravity

Measuring small energy di"erences by BEC interferometry on a chip

A compact and transportable cold atom inertial sensor for space applications

Matter-wave interferometry with single bright solitons

 
169

169

170

170

171

171

172

172

173

173

174

Tu-012

Tu-013

Tu-014

Tu-015

Tu-016

Tu-017

Tu-018

Tu-019

02- Atomic clocks
Highly-charged ions as a basis of optical atomic clockwork of superb accuracy

Progress of the NPL Sr optical lattice clock

Lattice clock comparisons with 1 × 10–17 stability at 500 s

Generalized Ramsey excitation of an optical transition with suppressed light shift

Testing time-variation of fundamental constants using Th and U nuclear clocks

Ultra-stable laser local oscillators

First primary frequency standard in Tunisia

Precision calculation of blackbody radiation shifts for optical frequency metrology

 
174

175

175

176

176

177

177

178

Tu-020

Tu-021

Tu-022

Tu-023

Tu-024

Tu-025

Tu-026

Tu-027

Tu-028

Tu-029

Tu-030

Tu-031

Tu-032

Tu-033

Tu-034

Tu-035

15- Precision measurements and tests of fundamental physics
Atomic masses of calcium, strontium and ytterbium

Progress towards measuring the electron EDM with thorium monoxide

Frequency metrology in quantum degenerate helium

Frequency combs and precision spectroscopy in the extreme ultraviolet

Search for an electron EDM with trapped hafnium %uoride ions

A nuclear-electronic spin gyro-comagnetometer

Accurate measurement and control of an IR laser frequency using an optical frequency 

comb and a remote frequency reference

Fundamental physics tests using the LNE-SYRTE clock ensemble

Optical transitions in highly charged ions for atomic clocks with enhanced sensitivity to 

variation of fundamental constants

Leggett-Garg inequalities for atom interferometry

A new search for tensor currents in the weak decay of magneto-optically trapped 6He

Towards packaged micro-integrated semiconductor laser modules for the deployment 

of cold atom based quantum sensors in space

Precision spectroscopy of the 2S-4P transition in atomic hydrogen

Recent measurements of 1S-2S transition frequency in atomic hydrogen

Strontium atoms in optical lattices: applications to optical clocks and accurate 

gravimeters 

Enhanced electron EDM �, -odd constant obtained from highly-correlated molecular 

four-component con!guration interaction calculations

 
178

179

179

180

180

181

181

182

182

183

183

184

184

185

185

186

Tu-036

Tu-037

Tu-038

Tu-039

Tu-040

Tu-041

Tu-042

Tu-043

Tu-044

19- Spectroscopy
Regularities and tendencies in atomic spectra

Laser spectroscopy of the radioactive La isotopes 

Optically detected magnetic resonance using elliptical polarization

Velocity selective polarization spectroscopy of an atomic Rb vapor in lambda and 

ladder excitation schemes

Electromagnetically induced polarization rotation in Na ladder systems

A frequency-comb-referenced OPO for sub-Doppler spectroscopy

Realtime software-base frequency control for two diode lasers

Raman tweezers spectroscopy of supercooled water droplet 

Dielectronic recombination of low-ionized tungsten ions

 
186

187

187

188

188

189

189

190

190
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Topic B - Ultracold gases

Tu-045

Tu-046

Tu-047

Tu-048

Tu-049

Tu-050

Tu-051

Tu-052

Tu-053

Tu-054

Tu-055

Tu-056

Tu-057

Tu-058

Tu-059

Tu-060

Tu-061

Tu-062

Tu-063

Tu-064

Tu-065

Tu-066

Tu-067

Tu-068

Tu-069

Tu-070

Tu-071

Tu-072

Tu-073

Tu-074

Tu-075

Tu-076

06- Bose gases
Elastic constants of hcp 4He through of path integral Monte Carlo

Observation of topologically stable 2D Skyrmions in an antiferromagnetic spinor 

Bose-Einstein condensate 

Vortex lattices in two-species Bose–Einstein condensates

Two mode at Bose-Einstein Condensate in triple well

Unlock the mystery of near-resonance Bose gases 

Crystallized merons and inverted merons in the condensation of spin-1 Bose gases with 

spin-orbit coupling

Bose-Einstein condensation of 85Rb by direct evaporation in an optical dipole trap

Cooling by heating a super!uid

Creating and characterizing vortex clusters in atomic Bose-Einstein condensates

Vortex core deformation in spin-1 BECs

Stability of ring dark solitons in toroidal Bose-Einstein condensates

A hybrid optical and magnetic ultracold atom chip system

Critical rotation of an annular super!uid Bose gas

High-contrast spatial interference of condensates

Hanbury Brown and Twiss correlations across the Bose-Einstein condensation threshold

Recurrence time of quantum dynamics in the interacting 1D Bose gas

Intensity correlations of Bose-Einstein-condensed light in a dye microcavity

Ab initio stochastic model for 2D Bose gas experiments: no free parameters

Engineering entanglement for metrology with rotating matter waves 

Quantum Kinetic Theory of Collisionless Super!uid Internal Convection

Instabilities of periodic soliton patterns with a long-ranged interaction

Towards probing quantum many-body systems with single atom resolution

A mesoscopic gas of spin 1 bosons

Nonthermal "xed points and super!uid turbulence in an ultracold Bose gas

Rapid formation of Rubidium Bose-Einstein Condensates in a crossed dipole trap with 

tunable trap aspect ratio 

Ultra-sensitive in situ imaging for matter-wave optics

Two-body anticorrelation in harmonically trapped Bose gases

Quantised decay of high charge vortices in an annular BEC

Interaction between cold atoms and carbon nano tubes

Dynamic Kosterlitz-Thouless transition in 2D Bose mixtures of ultra-cold atoms

Calorimetry of a Bose-Einstein condensate

Quantum and thermal density !uctuations in 1D Bose gases

 
191

191

192

192

193

193

194

194

195

195

196

196

197

197

198

198

199

199

200

200

201

201

202

202

203

203

204

204

205

205

206

206

Tu-077

Tu-078

Tu-079

Tu-080

Tu-081

Tu-082

Tu-083

09- Dipolar gases
Thermal spin !uctuations in spinor condensates

Con"nement-induced collapse of a dipolar Bose-Einstein condensate 

Observation of Feshbach resonances in ultracold Er gases

Towards stable groundstate NaK molecules

Dipolar gases 

Evaporative cooling of polar molecules

Ultracold Dipolar Bose-Einstein Condenstates in an Optical Lattice

 
207

207

208

208

209

209

210
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Topic B - Ultracold gases

Tu-084

Tu-085

Tu-086

Tu-087

Tu-088

Tu-089

Tu-090

Tu-091

Tu-092

Tu-093

Tu-094

Tu-095

10- Fermi gases
Coherent multi-!avor spin dynamics in a fermionic quantum gas

Feynman diagrams versus Fermi-gas Feynman emulator

Topological super!uid in a trapped two-dimensional polarized Fermi gas with spin-

orbit coupling

Dynamic spin response of a strongly interacting Fermi gas

Low temperature properties of the fermionic mixtures with mass imbalance in optical 

lattice

Conduction properties of ultracold fermions

Attractive and repulsive Fermi polarons in two dimensions

Possibility of gapless super!uid states of Fermi atoms in triangular optical lattices

Virial expansion with Feynman diagrams

Spin-depairing transition in one-dimensional two-component Fermi gases

General properties of universal Fermi gases in arbitrary dimensions

Strongly interacting mixtures of bosonic 23Na and fermionic 40K

 
210

211

211

212

212

213

213

214

214

215

215

216

Tu-096

Tu-097

Tu-098

Tu-099

Tu-100

Tu-101

Tu-102

Tu-103

Tu-104

Tu-105

Tu-106

Tu-107

Tu-108

Tu-109

Tu-110

13- Optical lattices
Unconventional super!uidity in higher bands of an optical lattice

Matter wave scattering on a time-dependent optical lattice

Magnetic lattices for ultracold atoms 

Dual mott insulator in a spin-dependent optical lattice

Interplay between interaction and localization in 1D quasiperiodic systems

Engineering Dirac points with ultracold fermions in a tunable optical lattice

Rydberg atoms in optical lattices

Numerical investigation of electromagnetically induced grating for tripod scheme

Bose-fermi mixtures in one-dimensional incommensurate lattices

Transport and excitations in lattice-trapped bosonic mixtures

Schwinger-Keldysh approach to a quantum quench in the Bose Hubbard model

Resolution assessment of a !uorescence microscope for observing single ytterbium 

atoms trapped in two-dimensional optical lattice

High-resolution optical spectra of bosonic ytterbium atoms in an optical lattice: 

comparison between numerical calculations and experiments

Single-particle excitation spectrum and correlation e"ects in a Bose-Fermi mixture

Towards Russian optical clock with cold strontium atoms, present status and 

performance

 
216

217

217

218

218

219

219

220

220

221

221

222

222

223

223

Topic C - Quantum

Tu-111

Tu-112

Tu-113

Tu-114

Tu-115

Tu-116

Tu-117

Tu-118

Tu-119

Tu-120

Tu-121

Tu-122

Tu-123

Tu-124

Tu-125

16- Quantum information
Lattices of atom microtraps on magnetic-#lm atom chips

Controlled emission and absorption of single photons by a single ion

Amelioration of BB84 Quantum transmission protocol based on Blind detection 

method

Einstein-Podolsky-Rosen entanglement and quantum steering for a BEC

Four-partite cluster states and their application for quantum teleportation

Heralded noiseless linear ampli#er in continuous variable QKD

Observation of quantum superposition state without wave function collapse

Neutral atom qubits in a planar lattice of magic ground-Rydberg traps

Long-lived ion qubits in a microfabricated surface trap

Nonclassicality indicators for entangled number states 

Remote entanglement between a single atom and a BEC

Spatial entanglement in two-electron atomic systems

Nonlinear interferometer and multipartite entanglement using two four wave mixing 

ampli#ers

On a systematic degenerate adiabatic perturbation theory

E$cient atomic excitation by multi-photon pulses propagating along two spatial 

modes for quantum information processing

 
224

224

225

225

226

226

227

227

228

228

229

229

230

230

231



22

Topic C - Quantum

Tu-126

Tu-127

Tu-128

Tu-129

Tu-130

Tu-131

Tu-132

Tu-133

Tu-134

Tu-135

Tu-136

Tu-137

Tu-138

Tu-139

Tu-140

Tu-141

Tu-142

Tu-143

17- Quantum optics and cavity QED
Topological protection in photonic systems

Exploring cavity-mediated long-range interactions in a dilute quantum gas

Non-Markovian waiting time distribution

Line shapes in electromagnetically induced transparency for 5S
1/2

 –5P
3/2

–5D
5/2

 

transitions of 87Rb atoms

Long lived polaritons con!ned in a tunable Fabry–Perot microcavity

Generation and tomography of W-states in an atomic spin-ensemble coupled to a 

high-!nesse cavity

Generating non-classical light using Rydberg interactions

Quantum noise for Faraday light-matter interfaces

Interaction of light-quantized pulse with atomic system

Strong coupling of single atoms to a whispering-gallery-mode bottle microresonator

Excitation of a single atom with a temporaly shaped light pulses

Mechanical resonance imaging and optomechanical coupling of atoms in a intracavity 

trichromatic lattice

Local !elds and renormalization of characteristic frequencies for light emitters in a 

dielectric

Dynamics of atom-atom correlations in the Fermi model

Coupling color centers in diamond to !ber-based Fabry-Pérot microcavities 

Size e#ects on thermal radiation of a dielectric microparticle

Coherently pumped cavity-QED microlaser

Quantum correlated pulses from a synchronously pumped optical parametric oscillator

 
231

232

232

233

233

234

234

235

235

236

236

237

237

238

238

239

239

240

Tu-144

Tu-145

Tu-146

Tu-147

Tu-148

Tu-149

18- Quantum simulators with atoms and ions
Direct observation of coherent backscattering of ultracold atoms

Towards single-atom-resolved detection and manipulation of strongly correlated 

fermions in an optical lattice

Collective oscillation of a spin-orbit coupled Bose-Einstein condensate

Simulation of electric dipole moment of neutral relativistic particles

Strongly correlated bosons on frustrated optical lattices

Observation of phonon hopping in radial vibrational modes of trapped ions

 
240

241

241

242

242

243

Topic D - Traps & Interactions

Tu-150

Tu-151

Tu-152

Tu-153

Tu-154

Tu-155

Tu-156

Tu-157

Tu-158

Tu-159

Tu-160

Tu-161

Tu-162

Tu-163

Tu-164

Tu-165

Tu-166

Tu-167

03- Atomic interactions and collisions
Relativistic and multipole e#ects on the polarization of Lyman line emission following 

radiative recombination of bare ions

Inelastic collisions of Al and Sb atoms with helium in homogeneous magnetic !elds

Dielectronic Recombination rates for Ar6+ and Kr24+ 

Macroscopic quantum self-trapping in dynamical tunnelling

Long-range Rydberg-Rydberg interactions in two-electron atoms

Towards photon blockade using Rydberg superatoms

Non-gaussian distribution of photoassociated cold atom

High resolution spectroscopy of interacting Rydberg gases 

Intensity correlations in electromagnetically induced absorption

Avalanche ionization dynamics of a strongly blockaded Rydberg gas

Impact of collisions with neutral Hydrogen on spectral lines’ polarization of a multilevel 

atomic model 

Vortices in the !nal-state continuum of a positron-atom ionization collision

Feshbach resonances in cesium at ultra-low static magnetic !elds

Studying two-photon cooperative absorption on cold atoms

Ultracold polar molecule collisions in quasi-1D geometries

Geometric phase in electron exchange excitation of a single atom

Controlling chemical reactions of a single particle

Elastic scattering of positronium using the con!ned variational method

 

243

244

244

245

245

246

246

247

247

248

248

249

249

250

250

251

251

252
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Topic D - Traps & Interactions

Tu-168

Tu-169

Tu-170

Tu-171

Tu-172

Tu-173

Tu-174

Tu-175

Tu-176

07- Cold neutral and ionic molecules, cold chemistry
A high-!ux polar molecular radical source for the ThO eEDM experiment

Towards a quantum gas of polar YbCs molecules

Making a magneto-optical trap for polar molecules

Toward laser cooling of photoassociated KRb molecules

Systematic analysis of long-range interactions between polar bialkali molecules

Enhancing photoassociation rates by non-resonant light control of a shape resonance

Production of ultracold Sr
2
 molecules in the electronic ground state

A path integral study on a CO molecule trapped by para-hydrogen clusters 

2-photon photoassociation spectroscopy in a mixture of Yb and Rb

 
252

253

253

254

254

255

255

256

256

Tu-177

Tu-178

Tu-179

Tu-180

Tu-181

Tu-182

Tu-183

Tu-184

Tu-185

Tu-186

Tu-187

Tu-188

Tu-189

Tu-190

Tu-191

Tu-192

08- Cooling and trapping of atoms and ions
Simple 2D permanent magnetic lattices for ultracold atoms

Realization of a 85Rb-87Rb hetero-nuclear single atom array

Temperature measurement of cold atoms using transient absorption from an optical 

nano"bre

Beam-laser spectroscopy and optical pumping on iron atoms

Laser cooling of thulium atoms with Blue-Ray diodes

Simulation of the motion of ions in Paul trap

Simultaneous magneto-optical trapping of Rb and Sr

Large Sr+ Coulomb crystals: isotopic enrichment and single-pass absorption

Towards ground state electron guiding on a surface electrode microwave chip

Sympathetic cooling of ions by ultracold Na atoms in a hybrid trap

E#ects of a non-Gaussian pro"le intensity beam in a magneto-optical trap

Generation of a decoherence-free entangled state using a radio-frequency dressed 

state 

Towards ultracold mixtures on an atom chip

A versatile collider for ultracold atoms

Fundamental atomtronic circuit elements

Doppler cooling of multilevel-level systems by the coherent pulse trains

 
257

257

258

258

259

259

260

260

261

261

262

262

263

263

264

264

Tu-193

Tu-194

Tu-195

Tu-196

Tu-197

11- From two body to manybody systems
Excited state spatial distributions in a cold strontium gas

Rf spectroscopy of the E"mov energy level 

Observation of ferromagnetic spin correlations in a 1D Fermi system

Universality and the three-body parameter of helium-4 trimers

Exploration into ultra cold chemistry: few-body calculation in Bose-Fermi mixture

 
265

265

266

266

267

Topic E - Atomic physics and beyond

Tu-198

Tu-199

Tu-200

Tu-201

Tu-202

Tu-203

Tu-204

Tu-205

04- Atoms in external !elds
Investigating magnetic "eld near a superconducting atom chip with cold atoms

Conversion of bright magneto-optical resonances into dark by changing temperature 

at "xed laser frequency for D
2
 excitation of atomic rubidium

E#ects of dark state formation in the hyper"ne excitation spectra of Na atoms

Suppression of excitation channels by composite pulse sequences

Optimal control of a few atoms in a bipartite superlattice

Optical repumping of triplet-P states enhances magneto-optical trapping of ytterbium 

atoms 

Development of perturbed relativistic coupled-cluster theory for the calculation of 

electric dipole polarizability of closed-shell systems

Hyper"ne frequency shift and Zeeman relaxation in alkali vapor cells with anti-

relaxation alkene coating

 
267

268

268

269

269

270

270

271

Tu-206

Tu-207

Tu-208

Tu-209

Tu-210

05- Beyond atomic physics (bio, optomechanics, astro, etc.)
Programmable trap geometries with Superconducting atom chips

Hybrid atom-membrane optomechanics

Cavity optomechanics with micromirrors and nanomembranes

Long-range gravitational-like interaction in a neutral cold gas

Towards room-temperature electron spin detection in biological systems

 
271

272

272

273

273
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Topic E - Atomic physics and beyond

Tu-211

Tu-212

Tu-213

Tu-214

12- Intense !elds and ultrafast phenomena
In situ tomography of femtosecond optical beams with a holographic knife-edge 

Intensity-resolved above threshold ionization yields obtained with femtosecond laser 

pulses 

Time evolution method in rigged QED: formulation and simulation

Strong-!eld above-threshold ionization in laser-irradiated C
60

: the signature of orbital 

symmetry and intramolecular interference

 
274

274

275

275

Tu-215

Tu-216

Tu-217

Tu-218

Tu-219

Tu-220

14- Other
Generation of a pilot phase pulse during propagation of slow elliptically polarized 

optical pulses in a medium under coherent population trapping

Numerical study on the spin coherence in a non-ideal atom cloud

Dynamical decoherence control of atomic spin ensemble

Quantum particles around near-black hole objects: resonant particle capture, spectrum 

collapse, and the smooth transition to black hole absorption

Adiabatic evolution of light in parallel curved optical waveguide array

Circularly polarized emission from ensembles of InGaAs/GaAs quantum rings

 

276

276

277

277

278

278
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Thursday 26 July, 11.00am-2.45pm

Topic A - Precision measurements

Th-001

Th-002

Th-003

Th-004

Th-005

Th-006

Th-007

Th-008

Th-009

Th-010

Th-011

Th-012

01- Atom interferometry
Experimental demonstration of a 12-meter atomic fountain

Ultra-high resolution spectroscopy with atomic or molecular Dark Resonances

Atom interferometry in an inductively coupled ring trap

High data-rate atom interferometer accelerometers and gyroscopes

A clock referenced to a particle’s mass; de!ning the kilogram in terms of the second

Testing Einstein’s equivalence principle with a lithium interferometer

A tunable 39K BEC for atom interferometry

Observation of free-space single-atom matterwave interference

Local gravity measurement with the combination of atom interferometry and Bloch 

oscillations 

Kapitza-Dirac di"raction with quantum prepared initial states for two-bunch atom 

interferometry 

Detection of the He-McKellar-Wilkens geometric phase by atom interferometry

Atom interferometry with an optically pumped lithium beam

 
281

281

282

282

283

283

284

284

285

285

286

286

Th-013

Th-014

Th-015

Th-016

Th-017

Th-018

Th-019

02- Atomic clocks
Clock laser system for a new implementation of the indium-ion optical clock

Towards a laser at 729 nm with hertz-level linewidth

Experiments on optical lattices for ytterbium optical clocks

Spin waves and collisional frequency shifts of trapped-atom clocks 

Evaluation of the dynamic correction to the black-body radiation clock shift in Yb

Comparison of two state-of-the-art Strontium optical lattice clocks

Development of cesium atomic fountains at NMIJ 

 
287

287

288

288

289

289

290

Th-020

Th-021

Th-022

Th-023

Th-024

Th-025

Th-026

Th-027

Th-028

Th-029

Th-030

Th-031

Th-032

Th-033

Th-034

Th-035

Th-036

15- Precision measurements and tests of fundamental physics
Start shift of the vibrational transition frequencies of 40CaH+ molecular ions induced by 

Raman lasers

High precision calculations of symmetry violating interactions in atoms and molecules

Proposal for a Bell inequality test with colliding condensates 

Investigation of ac-Stark shifts in excited states of dysprosium in support of a sensitive 

search for temporal variations in the !ne-structure constant

In#uence of angular- and spin-coupling terms on high precision calculations for lithium

Observation of the nuclear magnetic octupole moment of 173Yb from precise 

measurements of hyper!ne structure in the 3P
2
 state

High resolution spectroscopy of 1S-3S transition in hydrogen 

Slow and intense beams of YbF molecules

Improved measurement of the electron electric dipole moment using YbF

Development of Fr ion source with melting Au target for electron EDM search

Trial of cold antihydrogen beam extraction from a cusp trap for spectroscopic study of 

the ground-state hyper!ne splitting of antihydrogen atom

Resonant quantum transitions in trapped antihydrogen atoms

Measurement of muonium hyper!ne splitting at J-PARC

The new francium trapping facility at TRIUMF 

The orbital magnetism of relativistic atomic electrons

Quantum statistics in a Gaussian Potential

Electric dipole moment enhancement factor of thallium

 

290

291

291

292

292

293

293

294

294

295

295

296

296

297

297

298

298
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Topic A - Precision measurements

Th-037

Th-038

Th-039

Th-040

Th-041

Th-042

Th-043

Th-044

19- Spectroscopy
High resolution spectroscopic study of the A1∑+-b3Π complex in RbCs molecule

Multipass cell with confocal mirrors for sensitive broadband laser spectroscopy in the 

near IR 

Con#ning a vapour in a nanostructure yields a sub-Doppler resolution in linear 

spectroscopy

Toward to a new de#nition of the kelvin: accurate determination of the Boltzmann 

constant via spectral-line Doppler broadening

Narrow linewidth, hybrid integrated extended cavity diode lasers for precision 

quantum optics experiments in space

Odd-photon cancellation e$ect and the cooperative Lamb shift

Noise correlation spectroscopy in EIT with cold atoms

Doubly excited states of helium-like Cl

 
299

299

300

300

301

301

302

302

Topic B - Ultracold gases

Th-045

Th-046

Th-047

Th-048

Th-049

Th-050

Th-051

Th-052

Th-053

Th-054

Th-055

Th-056

Th-057

Th-058

Th-059

Th-060

Th-061

Th-062

Th-063

Th-064

Th-065

Th-066

Th-067

Th-068

Th-069

Th-070

Th-071

Th-072

Th-073

Th-074

Th-075

Th-076

06- Bose gases
Supersolid and Quantum Magnetic Phases with Mixtures of Bose-Condensed Rubidium 

and Degenerate Fermionic Lithium

Phase space theory of BEC and time dependent modes

Relaxation dynamics and pre-thermalization in an isolated quantum system

E$ects of tunable exchange symmetry for interacting bosons

Steady state structures of two-species Bose-Einstein condensates

Numerical studies of non-equilibrium dynamics during the condensation of binary 

bosonic mixtures of 87Rb and 133Cs using stochastic projected Gross-Pitaevskii equation

Vortex-sound interactions in trapped Bose-Einstein condensates

Finite temperature vortex dynamics in trapped Bose gases

Temperature dependence of three-body losses in unitary Bose gases

Rotation of a spin-orbit-coupled Bose-Einstein condensate

Stationary states of trapped spin-orbit-coupled Bose–Einstein condensates

Correlations and coherence in ultracold atomic gases 

Laser driving of superradiant scattering from a Bose-Einstein condensate at variable 

incidence angle 

Super%uid behaviour of a two-dimensional Bose gas

Collision of oblique dark solitons in the two-dimensional supersonic nonlinear %ow

Stable skyrmions in SU(2) gauged Bose-Einstein condensates

Acoustic analog of the dynamical casimir e$ect

Simulating brane–anti-brane annihilation in Bose-Einstein condensates

Creation and detection of momentum entanglement with metastable helium

Momentum distribution of a trapped 1D Bose gas and Yang-Yang thermometry

Towards using atom chip technology to map and control solid-state devices

Quantum phase transitions and quench dynamics in sodium spinor BECs 

Spin drag in a Bose gas 

Wave chaos and many-body dynamics in Bose-Einstein condensates

Adolescence of quantum-degenerate strontium

Non-equilibrium behaviour of Bose-Einstein Condensates

The e$ect of light assisted collisions on matter wave coherence in superradiant 

Bose-Einstein condensates

Nonequilibrium Thermo Field Dynamics approach to thermal process for one 

dimensional Bose gas in optical lattice

Instability in the Riemann problem of the two-%uid hydrodynamic equations for 

Bose-Einstein condensate

Mixtures of strongly and weakly correlated Bose gases

Decay of a super%uid current of ultra-cold atoms in a toroidal trap

E$ect of disorder in two-dimensional Bose gases
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303

304

304

305

305

306

306

307

307

308

308

309

309

310

310

311

311

312

312

313

313

314

314

315

315

316

316

317

317

318

318
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Topic B - Ultracold gases

Th-077

Th-078

Th-079

Th-080

Th-081

Th-082

09- Dipolar gases
Anisotropy of sound velocity in a dipolar Bose-Einstein Condensate

Magnetic properties of a dipolar BEC loaded into a 3D optical lattice 

Vortices in rotating dipolar Bose-Einstein condensates con!ned in annular potentials

Towards a two-species quantum degenerate gas of 6Li and 133Cs 

Anisotropic spontaneous four-wave mixing of two colliding dipolar Bose-Einstein 

condensates

Anisotropic features of dipolar Fermi gases

 
319

319

320

320

321

321

Th-083

Th-084

Th-085

Th-086

Th-087

Th-088

Th-089

Th-090

Th-091

Th-092

Th-093

Th-094

10- Fermi gases
Thermodynamics of the unitary Fermi gas and pairing from 3D to 2D

Spin-orbit-coupled ultracold atomic gases 

Solitons from BCS to BEC

Quantum Monte-Carlo algorithm for FeAs-superconductors
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Quantum simulations with ultracold bosons and fermions

Wolfgang Ketterle1

Research Laboratory for Electronics, MIT-Harvard Center for Ultracold Atoms, and Department of Physics, 
Massachusetts Institute of Technology, Cambridge, USA  

ketterle@mit.edu

I will summarize recent work at MIT on quantum simulations.  A two-component systems of bosons in optical 
lattices can realize spin Hamiltonians.  We present Bragg scattering of light as a detection method for magnetic 
phases, analogous to neutron scattering in condensed matter systems.  A two-component Fermi gas with repulsive 
interactions, described by the so-called Stoner model, was predicted to undergo a phase transition to a ferromag-
netic phase.  We show that the phase transition is preempted by pair formation.  Therefore, the Stoner model is an 
idealization not realized in Nature, since the paired state cannot be neglected.

Ultracold gases… Invited Talk 

Anderson localization of ultra-cold atoms

Alain Aspect 

Laboratoire Charles Fabry, Institut d’Optique/CNRS/Université Paris-Sud, Palaiseau, France  
Alain.aspect@institutoptique.fr 

-
pected to exist in wave physics. It has been realized in recent years that ultra-cold atoms offer remarkable possibili-
ties to observe experimentally Anderson localization [1], After presenting my naïve understanding of that fascinat-
ing problem, I will present some experimental results [2], and argue that ultra-cold atoms in a disordered potential 
can be considered a quantum simulator that should allow experimentalists to answer open theoretical questions.

References 
[1] A. Aspect and M. Inguscio, Anderson localization of ultracold atoms, Physics Today 62 (2009) 30, and references in.
[2] F. Jendrzejewski, A. Bernard, K. Muller, P. Cheinet, V. Josse, M. Piraud, L. Pezze, L. Sanchez-Palencia, A. Aspect, and 

P. Bouyer, Three-dimensional localization of ultracold atoms in an optical disordered potential, Nature Physics 8 (2012) 
398, and references in.
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“circuits” of ultra-cold atoms

K. C. Wright, R. B. Blakestad, C. J. Lobb, W. D. Phillips, and G. K. Campbell* 

Joint Quantum Institute, National Institute of Standards and Technology, and University of Maryland,  
Gaithersburg, Maryland, 20899-8424, USA  

*gretchen.campbell@nist.gov 

-

created a long-lived persistent current in a toroidal-shaped Bose-Einstein Condensate, and studied the behavior of 
the current in the presence of both stationary and rotating weak links. A repulsive optical barrier across one side 
of the torus creates the tunable weak link in the condensate circuit and can be used to control the current around 

velocity exceeds a critical velocity [1]. With arotating weak link, at low rotation rates, we have observed phase 

where vortices penetrate the bulk of the condensate. These results demonstrate an important step toward realizing 
an atomic SQUID analog. 

Reference
[1]  A. Ramanathan, K. C. Wright, S. R. Muniz, M. Zelan, W. T. Hill III, C. J. Lobb, K. Helmerson,W. D. Phillips, G. K. Campbell, 

, Phys. Rev. Lett 106, 130401 
(2011). 

 Invited Talk Ultracold Fermi gases

Deborah S. Jin*, Yoav Sagi, Tara Drake, and Rabin Paudel 

USA  
* jin@jilau1.colorado.edu 

The inherent density inhomogeneity of a trapped gas can complicate interpretation of experiments and can 
wash out sharp features. This is especially important for a Fermi gas, where interaction effects as well as the local 
Fermi energy, or Fermi momentum, depend on the density.  We report on experiments that use optical pumping with 
shaped light beams to spatially select the center part of a trapped gas for probing.  This technique is compatible with 
momentum-resolved measurements, and for a weakly interacting Fermi gas of 40K atoms, we present measurements 

a strongly interacting Fermi gas at the Feshbach resonance, where we probe Tan’s contact locally in the trapped 
gas. Unlike the trap-averaged case, predictions for the homogeneous contact differ substantially around the critical 
temperature for different many-body theories of the BCS-BEC crossover. 
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Martin W. Zwierlein

MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, 
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Strongly interacting gases of ultracold fermions have become an amazingly rich test-bed for many-body theo-
ries of fermionic matter. I will present high-precision measurements on the thermodynamics of a strongly interact-

-
ibility, the chemical potential, the entropy, and the heat capacity. Our measurements provide benchmarks for current 
many-body theories on strongly interacting fermions. Novel topological phases of matter are predicted for fermi-

Fermi gas [2]. For energies within the spin-orbit gap, the system acts as a spin diode. To fully inhibit transport, we 
create a spin-orbit coupled lattice with spinful band structure. In the presence of s-wave interactions, such systems 

References 

Universal Thermodynamics of a Unitary Fermi Gas”, Science 335, 563 (2012).
[2] Lawrence W. Cheuk, Ariel T. Sommer, Zoran Hadzibabic, Tarik Yefsah, Waseem S. Bakr, Martin W. Zwierlein, „Spin-Injection 
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B. Rem, A. Grier, I. Ferrier-Barbut, U. Eismann, A. Bergschneider, T. Langen,  
N. Navon, S. Nascimbène, F. Chevy, and C. Salomon*

 
supérieure, 24 rue Lhomond, 75231, Paris, France  

*salomon@lkb.ens.fr 

Ultracold dilute atomic gases can be considered as model systems to address some pending problem in Many-
Body physics that occur in condensed matter systems, nuclear physics, and astrophysics. We have developed a 
general method to probe with high precision the thermodynamics of locally homogeneous ultracold Bose and Fermi 

6Li), we will show that the gas thermody-
namic properties can continuously change from those of weakly interacting Cooper pairs described by Bardeen-
Cooper-Schrieffer theory to those of strongly bound molecules undergoing Bose-Einstein condensation. A detailed 
comparison with theories including recent Monte-Carlo calculations will be presented. Moving away from the uni-

three-body recombination rate of a unitary Bose gas as a function of temperature. 

References 
[1]  S. Nascimbène, N. Navon, K. Jiang, F. Chevy, and C. Salomon, Nature 463, 1057 (2010). 
[2]  N. Navon, S. Nascimbène, F. Chevy, and C. Salomon, Science 328, 729 (2010). 
[3]  S. Nascimbène et al., Phys. Rev. Lett. 106, 215303 (2011). 
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The electric dipole moment of the electron

E. A. Hinds*, J. J. Hudson, D. M. Kara, I. J. Smallman,  
J. Devlin, M. R. Tarbutt, and B. E. Sauer 

 
*ed.hinds@imperial.ac.uk 

According to the standard model of elementary particle physics, the electric dipole moment (EDM) of the elec-
tron is de  10–38 e.cm - currently far too small to observe. However, most extensions to the standard model predict 
much larger values, potentially accessible to measurement [1]. Hence, the search for the electron EDM is a search 
for physics beyond the standard model. In particular, the electron EDM is sensitive to new interactions that violate 
CP symmetry. It is considered that such interactions must be present in nature since the observed universe exhibits 
a strong excess of matter over antimatter [2]. I will survey the current status of ongoing experiments to measure the 
electron EDM, with particular emphasison the YbF experiment [3], which provides the most accurate measurement 
at present. I will also discuss prospects for further major improvements in sensitivity through the laser cooling of 
suitable molecules.

References 
[1]  E. D. Commins, Electric dipole moments of leptons, Adv. At., Mol., Opt. Phys., 40, 1-56 (1999). 
[2]  A. D. Sakharov, Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe, JETP, 5, 24 (1967), 

republished as Sov. Phys. Usp.34, 392 (1991). 
[3]  J. J. Hudson, D. M. Kara, I. J. Smallman, B. E. Sauer, M. R. Tarbutt, E. A. Hinds, Improved measurement of the shape of the 

electron, Nature, 473, 493 (2011). 
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J. S. Hangst

Department of Physics and Astronomy, Aarhus University, and Spokesperson, the ALPHA collaboration at CERN  
jeffrey.hangst@cern.ch 

Antihydrogen, the bound state of an antiproton and a positron, can be used as a test-bed of fundamental sym-
metries. In particular, the CPT Theorem requires that hydrogen and antihydrogen have the same spectrum. The 
current experimental precision of measurements of hydrogen transition frequencies approaches one part in 1014. 
Similarly precise antihydrogen spectroscopy would constitute a unique, model-independent test of CPT symme-
try. Antihydrogen atoms have been produced in quantity at CERN since 2002, when the ATHENA collaboration 
demonstrated [1] how to mix cryogenic plasmas of antiprotons and positrons to produce low energy anti-atoms. In 

-
gen atoms in a magnetic multipole trap. The atoms must be produced with an energy - in temperature units - of less 
than 0.5 K in order to be trapped. Subsequently, we have shown that trapped antihydrogen can be stored [3] for up 

many developments necessary to realise trapped antihydrogen, and I will take a look at the future of antihydrogen 
physics at CERN.

References
[1] Amoretti, M. et al., Nature 419, 456 (2002).
[2] Andresen, G. B. et al., Trapped Antihydrogen, Nature, 468, 673 (2010).
[3] Andresen, G. B. et al. Nature Physics 7, 558 (2011).
[4] Amole, C. et al., Nature 483, 439 (2012). 
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V. V. Flambaum

 

I present a review of recent results on a search for space-time variation of the fundamental constants. New 

allows humans (and any life) to appear. We appeared in the area of the Universe where the values of the fundamen-
tal constants are consistent with our existence. There is an agreement between the results obtained using different 
telescopes and different redshifts. Also, now there are no contradictions between the results obtained by different 
groups. These astrophysical results may be used to predict the variation effects for atomic clocks. The effects 
(which appear due to Sun and Earth motions) are very small and require improvement of the clock accuracy by 1-2 
orders of magnitude. The improvement of the clock sensitivity may be achieved using 229Th nuclear clocks where 
expected accuracy of the frequency measurement is 10–19 and the effect of the variation is enhanced by 4-5 orders 
of magnitude. A comparable accuracy of the frequency measurements may be also achieved in highly charged ions 
where the effects of the variation are enhanced by an order of magnitude. We found a number of allowed E1 and 
narrow higher multipolarity clock transitions in such ions. The frequencies are in the laser range due to the con-

clocks can also be used to measure possible dependence of the fundamental constants on environment (e.g. density 
of matter) and gravity. 

Precision measurements… Invited Talk 

Jun Ye 

I will present our latest advances in a Sr optical atomic clock where we have achieved measurement precision 
of 1 × 10–17 fractional frequency at a measurement time of 1000 s. This unprecedented spectroscopic capability has 
allowed us to characterize density-related systematic uncertainty below 1 × 10–18. It has also enabled us to explore 
many-body quantum dynamics where seemingly weak atomic interactions give rise to correlated states.
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Roman Schnabel

Institut für Gravitationsphysik, Leibniz Universität Hannover, Max-Planck-Institut für Gravitationsphysik (Albert-
Einstein-Institut), Hannover, Germany 

roman.schnabel@aei.mpg.de 

Current gravitational wave (GW) detectors are Michelson-type kilometre-scale laser interferometers measuring 
the distance changes between in vacuum suspended mirrors. The sensitivity of these detectors at frequencies above 

technology - the injection of squeezed light [1] - offers a solution to this problem. This talk will review recent prog-
ress on the generation of squeezed light, and also the recent squeezed-light enhancement of GEO600 [2], which will 

GEO600 now operates with its best ever sensitivity, which proves the usefulness of quantum entanglement and the 

References 
[1] C. M. Caves, “Quantum-mechanical noise in an interferometer”, Phys. Rev. D 23, pp. 1693-1708 (1981).

Nature Physics 7, pp. 962-965 (2011).
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molecules

Paolo De Natale1,2

1. CNR - Istituto Nazionale di Ottica, Largo E. Fermi, 6 I-50125 Firenze, Italy 
2. LENS (European Laboratory for Non-linear Spectroscopy ), Via Carrara 1, 50019 Sesto Fiorentino (FI), Italy 

paolo.denatale@ino.it

Interrogation and manipulation of atomic and molecular transitions for challenging experiments put increas-
ingly demanding constraints on sources, detectors and techniques. Key parameters like continuous coverage of 

techniques have the power to disclose new avenues for frontier research and, subsequently, change our way and 
quality of life. I will give an overview of recent results aiming at a study of new infrared sources and spectroscopic 
techniques, obtained at INO-CNR and LENS [1]. Applications to molecules [2] and atoms [3] will be shown. 

References 

107, 270802 (2011).
[3] P. Cancio Pastor et al., “Frequency Metrology of Helium around 1083 nm and Determination of the Nuclear Charge Radius”, 

Phys. Rev. Lett. 108, 143001 (2012).
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Quantum networks of atoms

Christopher Monroe

Joint Quantum Institute and University of Maryland, College Park, MD, USA  
monroe@umd.edu

Trapped atomic ions are standards for quantum information processing, with each atom storing a quantum bit 
(qubit) of information in appropriate internal electronic states.  The Coulomb interaction mediates entangling quan-
tum gate operations through the collective motion of the ion crystal, which can be driven through state-dependent 
optical dipole forces.  Scaling to larger numbers of trapped ion qubits can be accomplished by either physically 
shuttling the individual atoms through advanced microfabricated ion trap structures or alternatively by mapping 
atomic qubits onto photons for the entanglement over remote distances.  Such a quantum network will impact 
quantum information processing, quantum simulation of models from condensed matter, quantum communication, 
and the quest for building ever larger entangled quantum states and perhaps entangling atoms with other physical 
platforms such as quantum dots or macroscopic mechanical systems.  Work on these fronts will be reported, in-
cluding quantum simulations of magnetism with N=16 atomic qubits and the uses of entanglement of matter over 
macroscopic distances.
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B. P. Lanyon1,2,*, C. Hempel1,2, D. Nigg2, M. Müller1,3, R. Gerritsma1,2, F. Zähringer1,2,  
P. Schindler2, J. T. Barreiro2, M. Rambach1,2, G. Kirchmair1,2, M. Hennrich2, P. Zoller1,3,  

R. Blatt1,2, and C. F. Roos1,2

 
Otto-Hittmair-Platz 1, A-6020 Innsbruck, Austria  

2. Institut für Experimentalphysik, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria,   
3. Institut für Theoretische Physik, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria  

*ben.lanyon@uibk.ac.at 

Recently, small strings of ultra-cold trapped ions have been used to precisely simulate and calculate proper-

strings can be manipulated to simulate any other quantum system, using a stroboscopic combination of quantum 
logic gates. A key challenge now is to scale up simulation size and complexity, to a level where new insights into 
many-body quantum phenomena are possible. I will discuss our plans to perform simulations using long ion strings 
and generate large-amounts of non-classical correlations which cannot be represented classically. 

Reference 
[1]  B. P. Lanyon et al, Universal digital quantum simulation. Science, 334, pp. 57–61, (2011).
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optical lattice

Stefan Kuhr1,2

 
2. Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str 1, 85748 Garching, Germany  

stefan.kuhr@strath.ac.uk 

The Heisenberg model is fundamental to quantum magnetism, as it describes properties of many materials such 
as transition metal oxides and cuprate superconductors. Mobile spin impurities are unique probes of its physics but 

for these phenomena, in particular the novel techniques for single-atom imaging [1] and single-spin addressing [2] 
with a high-resolution optical microscope. Using this technique we have prepared a single spin impurity in a one-di-
mensional Mott insulator and have directly observed its coherent quantum dynamics. We measured its propagation 

with analytical and numerical predictions. We also used the high-resolution imaging technique for in-situ detection 
of individual Rydberg excitations in a 2D atomic Mott insulator, and we could directly observe Rydberg blockade 
and crystalline states of the excitations. 

References 
[1]  W. Bakr et al., A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice, Nature , 74 (2009); 

467, 68 (2010). 
[2]  C. Weitenberg et al., Single-spin addressing in an atomic Mott insulator, Nature 471, 319 (2011). 
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Emil Kirilov2,  Brendon O’Leary2,  Elizabeth Petrik2, and Ben Spaun2

 
2. Harvard University Physics Department, Cambridge, MA, USA  

* hutzler@physics.harvard.edu 

Measurement of a non-zero electric dipole moment (EDM) of the electron within a few orders of magnitude of 
the current best limit [1] of |de|<1.05*10-27 e*cm would be an indication of CP violation beyond the Standard Model. 
The ACME Collaboration is searching for an electron EDM by performing a precision measurement of electron 
spin precession signals from the metastable H 3

1 state of thorium monoxide (ThO), using a cold and slow beam. 
We discuss the current status of the experiment. Based on a data set acquired from 14 hours of running time over 

e=1*10-28

running time in days.

Reference 
[1] J. J. Hudson et al., “Improved measurement of the shape of the electron.” Nature 473, 493 (2011).
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Accurate molecular spectroscopy in the mid-infrared region allows precision measurements of fundamental 
constants. For instance, measuring the linewidth of an isolated Doppler-broadened absorption line of ammonia 

k  [1]. We report on our latest measurements. By 

k  with an uncertainty of a few ppm is reachable [2]. This is comparable to the current 
k  

determined by the CODATA. Furthermore, having multiple independent measurements at these accuracies opens 
k

International System of Units (SI). 

References 
[1]  C. Lemarchand et al., Progress towards an accurate determination of the Boltzmann constant by Doppler spectroscopy, New 

J. Phys. 13, 073028 (2011). 
[2]  M. Triki et al., Evidence for speed-dependent effects in NH3

Precision measurements Hot topic 

Rob van Rooij1, Joe Borbely1, Juliette Simonet2, Maarten Hoogerland2, Kjeld Eikema1, Roel Rozendaal1, 
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We have measured the absolute frequency of the 1557-nm doubly forbidden transition between the two meta-
stable states of helium, 2 3S1 (lifetime 8000 s) and 2 1S0 (lifetime 20 ms), with 1 kHz precision [1].With an Einstein 

-7 s-1 this is one of weakest optical transitions ever measured. The measurement was performed in 
a Bose-Einstein condensate of 4He* as well as in a Degenerate Fermi Gas of 3He*, trapped in a crossed dipole trap. 

3 3P transition [2].  

References 
[1] R. van Rooij, J. S. Borbely, J. Simonet, M. D. Hoogerland, K. S. E. Eikema, R. A. Roozendaal, W. Vassen, “Frequency 

3S1
1S0 transition”, Science 333, 196 (2011). 

[2] P. Cancio Pastor, L. Consolino, G. Giusfredi, P. De Natale, M. Inguscio, V. A. Yerokhin, K. Pachucki, “Frequency metrology 
of helium around 1083 nm and determination of the nuclear charge radius”, Phys. Rev. Lett. 108, 143001 (2012).
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Cavity Quantum Electrodynamics (CQED) deals with the strong coupling of atoms with quantized radiation 
-

rying Rydberg atoms to a very high Q superconducting cavity. With this system fundamental tests of quantum 
physics have been realized and basic quantum information procedures demonstrated. Microwave CQED has been 

superconducting Josephson junctions interact with high-Q coaxial radiofrequency resonators. These systems, based 
on well-developed solid state technology, are very promising for quantum information science. Atomic CQED 
and“Circuit-QED” bear strong similarities and also present some marked differences which will be illustrated by 
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Quantum physics allows a new approach to information processing. A grand challenge is the realization of 
a quantum network for long-distance quantum communication and large-scale quantum simulation [1]. The talk 

resonators, each containing a single quasi-permanently trapped atom as a stationary quantum node [2]. Reversible 
quantum state transfer between the two atoms and entanglement of the two atoms are achieved by the controlled 

perspective for scalability. It allows for arbitrary topologies and features controlled connectivity as well as, in prin-

is an ideal test bed for fundamental investigations, e.g. quantum nonlocality. 

References 
[1] J. I. Cirac et al., “Quantum state transfer and entanglement distribution among distant nodes in a quantum network”, Phys. 

Rev. Lett. 78, pp. 3221-3224 (1997). 
[2] S. Ritter et al., “An Elementary Quantum Network of Single Atoms in Optical Cavities”, Nature 484, pp. 195-200 (2012). 
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Quantum dots (QDs) in photonic crystal (PC) cavities are interesting both as a test-bed for fundamental studies 
of quantum optics and cavity QED, as well as a platform for classical and quantum information processing. Name-

10-25GHz). We have employed a platform consisting of a single self-assembled InAs QD in a GaAs PC cavity to 
study quantum optics and cavity QED. We have also probed ultrafast dynamics and strong optical nonlinearity that 
occur in the strong coupling regime, and employed them to achieve controlled amplitude and phase shifts between 
two optical beams at the single photon level and at the 25GHz speed. We have also probed the ladder of dressed 
states of the strongly coupled QD-cavity system and studied the regimes of photon blockade and photon induced 
tunneling, as well as nonclassical light generation enabled by this ladder. Finally, we have demonstrated strong 
coupling between a single quantum dot and a photonic molecule consisting of two coupled PC cavities, which is 
useful for nonclassical light generation and potentially even quantum simulation.  

Quantum Hot topic 
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-
mation on demand. Our scheme is based on the controlled reversible inhomogeneous broadening (CRIB) mecha-

a linear atomic detuning in the propagation direction, the gradient echo memory (GEM) has been shown to be 
k-space polaritons to describe the dynamics of multiple 

pulse storage in GEM. We show experimental results of the GEM system implemented using warm Rb vapour cell. 

multiple pulse storage, spectral manipulation, image storage and a quantum characterization of the noise properties 
of GEM. 

References 

Phys. Rev. A 73, 020302(R) (2006). 
[2]  G. Hétet et al. Electro-optic quantum memory for light using two-level atoms, Phys. Rev. Lett. 100, 023601 (2008); M. 
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in an optical lattice. A suitable periodic shaking of the lattice allows to engineer a Peierls phase for the hopping 
parameters. This schemethus allows one to address the atomic internal degrees of freedom independently. We 

superfuids at arbitrary non-zero quasi-momentum [1]. 
-

observed for a 
breaking perturbation. 

References 

[2]  J. Struck et al., Science 333, 996 (2011). 
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We will describe a recently demonstrated cold-atom Raman laser that operates deep into the superradiant or 
bad-cavity regime [1]. The system operates with <1 intracavity photon and with an effective excited state decay 
linewidth <1 Hz.  This model system demonstrates key physics for future active optical clocks (similar to masers) 
that may achieve frequency linewidths approaching 1 mHz due to 3 to 5 orders of magnitude reduced sensitivity to 
thermal mirror noise.  The measured linewidth of our model system demonstrates that the superradiant laser’s fre-
quency linewidth may be below the single particle dephasing and natural linewidths, greatly relaxing experimental 

the collective atomic phase with a precision that in-principle can be near the standard quantum limit.  The possibili-

Reference 
[1] Justin G. Bohnet, Zilong Chen, Joshua M. Weiner, Dominic Meiser, Murray J. Holland, and James K. Thompson, “A steady-

state superradiant laser with less than one intracavity photon”, Nature 484, pp. 78-81 (2012). 
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We demonstrate quantum-limited interaction-based measurement [1], in which interactions among probe par-
ticles are responsible for the observed signal [2]. This approach differs from squeezing-based quantum metrology 
in that 1) it does not require entanglement and 2) its sensitivity can improve faster than the usual Heisenberg limit 

 ∝ N–1. We produce interactions between the N = 105 – 108 photons in a 50 ns optical pulse by passing them 
through acold atomic ensemble in an optical dipole trap. The photons experience non-linear Faraday rotation in 
proportion to the collective spin F of the ensemble, providing a sensitivity  ∝ N , observed over two orders of 
magnitude in N. 

References 
[1]  M. Napolitano, M. Koschorreck, B. Dubost, N. Behbood, R. J. Sewell, and M. W. Mitchell, Interaction-based quantum 

metrology showing scaling beyond the Heisenberg limit, Nature 471, 486–489 (2011). 

Entanglement, Phys. Rev. Lett. 101, 040403 (2008). 
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Ultracold quantum gases in optical lattices offer a highly controlled setting to investigate quantum matter un-

Higg’s type particle in the excitation spectrum. We show the existence of such a Higgs mode in a two-dimensional 

strengths reached in our experiment correspond to several thousands of Tesla that would have to applied to real 

of thermodynamically stable negative temperature states for matter and discuss prospects to reach Bose-Einstein 
condensation at negative temperatures.
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Interactions between particles can be strongly altered by their environment. Here we demonstrate a tech-
nique for modifying interactions between ultracold atoms by dressing the bare atomic states with light, creating a 
screened interaction of vastly increased range that scatters states of higher angular momentum at collision energies 
where only s-wave scattering would normally be expected. We optically dressed two neutral atomic Bose-Einstein 
condensates with a pair of lasers – linking together threedifferent internal atomic states – and then collided these 
condensates with the equal, and opposite, momenta of just two optical photons per atom. In agreement with our 
theoretical model, the usual s-wave distribution of scattered atomswas altered by the appearance of d- and g-wave 
contributions [1]. 

Reference 
[1]  R. A. Williams et al, , Science 355, pp. 314-317 (2012). 
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quantum transport through lattices with an engineered and well controlled phononic bath, for example allowing 
the realization of non-markovian impurity-bath couplings; and (ii) measurement of optical lattice gas properties 
through impurity measurements, for instance to distinguish different phases of the background gas. Finally, we 

is shown how dephasing and incoherent couplings between spin chains can improve spin transport. We discuss how 
such setups could be simulated with optical lattices and hence provide important insights, for instance into exciton 
transport through conjugate polymers.

Reference 
[1] T. H. Johnson, S. R. Clark, M. Bruderer and D. Jaksch, “Impurity transport through a strongly interacting bosonic quantum 

gas”, Phys. Rev. A 84, 023617 (2011).
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mass-imbalaced systems, they appear in various parameter regimes and are universal in that they do not depend on 
short-range details other than the scattering length and the three-body parameter, whereas they are distinguished 

-
ture discrete, continuous, and no scale invariance. On the other hand, in systems of identical atoms, there has been 
mounting evidence that the three-body parameter is nearly constant in log scale not only across different universal 
regimes of one atomic species but also across different atomic species. We report the result of our numerical calcu-
lations based on a realistic Helium potential in agreement with experiemental results on Li, Rb, and Cs.
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Few-particle Fermi systems are the basic building blocks of all matter which have been studied extensively in 
atomic, nuclear and condensed matter physics. In our experiments, we have realized few-fermion systems consist-

of freedom can be controlled. These deterministic ensembles are ideally suited for the quantum simulation of few-
body systems. 

spin polarized system with an interacting system containing two different spin states we could demonstrate fermi-
onization of the two distinguishable particles for diverging repulsive coupling strength by showing that the square 

we observe a strong odd-even effect in the interaction energy and correlated pair tunneling out of a tilted trap. For 
strong repulsive interactions we observe ferromagnetic correlations, when the repulsion between distinguishable 
particles becomes stronger than the Fermi energy. 
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I will give an overview of the studies of dipolar quantum gases, focusing on their stability. After that the cen-

non-reactive polar molecules, in two dimensions. It will be emphasized how three-body interactions support the 
emergence of stable supersolid states. 
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Advances in the quantum manipulation of ultracold atomic gases are opening a new frontier in the quest to 
better understand strongly correlated matter. By exploiting the long-range and anisotropic character of the dipole-
dipole interaction, we hope to create novel forms of soft quantum matter, phases intermediate between canonical 
states of order and disorder. Our group recently created Bose and Fermi quantum degenerate gases of the most 
magnetic element, dysprosium, which should allow investigations ofquantum liquid crystals. We present details of 

-
ing a Dy cryogenic atom chip microscope that will possess unsurpassed sensitivity and resolution for the imaging 
of condensed matter materials exhibiting topologically protected transport [3] and magnetism.  

References 
[1]  Lu, M. and Burdick, N. Q. and Lev, B. L, Quantum Degenerate Dipolar Fermi Gas, to appear in Phys. Rev. Lett.; 

[2]  Lu, M. and Burdick, N. Q. and Youn, S.-H. and Lev, B. L, , Phys. 
Rev. Lett. 107, 190401 (2011). 
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degenerate gases
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valence-electron atom, belonging to the lanthanide series. It possesses a strongly magnetic dipolar character, a rich 
energy level diagram, and various isotopes, among which one has fermionic nature. Despite the complex atomic 

degeneracy by means of laser cooling on a narrow-line transition and standard evaporative cooling techniques. We 
observe favorable scattering properties of 168

dream system for ultracold quantum gas experiments. 

Reference 
[1]  K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R. Grimm, and F. Ferlaino, , 

Phys. Rev. Lett. 108, 210401 (2012). 
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Ultracold Fermi gases near Feshbach resonances provide a unique strongly correlated many-body system that 
can be controlled and probed with high precision. These systems, characterised by short-range interactions and 
large scattering lengths, are challenging to describe theoretically and various approximate methods have been 
employed to make calculations tractable. Reliable experimental benchmarks are therefore a key requirement and 
progress is now demanding accuracies at the level of one percent. Here, we report on our precision experimental 
measurements of the density and spin dynamic and static structure factors of strongly interacting Fermi gases [1]. 
We use these to make the most precise determination of Tan’s universal contact parameter [2] in a unitary Fermi gas 
and compare our results with different theoretical predictions. Progress towards obtaining the homogeneous contact 
from measurements on a trapped gas will also be presented. 

References 
[1]  S. Hoinka, M. G. Lingham, M. Delehaye, and C. J. Vale, Dynamic spin response of a strongly interacting Fermi gas, 
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When atoms are exposed to intense laser radiation, electrons in the ground state may tunnel ionize, acquire 

this process is repeated many times, the emitted radiation takes the form of a frequency comb, with peaks at odd 

being developed ranging from single attosecond pulses to pulse trains and the techniques used to characterize them.
One of the most interesting properties of attosecond pulses is that thay can be used to measure both spectral 

phase and amplitude of an unknown wave function or wave packet by pump-probe interferometric methods, giving 
us access to the temporal dynamics of the process that led to this wave-packet. In this presentation, we will describe 
some of these applications, and in particular recent results concerning measurement of photoionization dynamics 
from different atomic subshells [1]. 

Reference 
[1] K. Klünder et al., “Probing single-photon ionization on the attosecond time scale” Phys. Rev. Lett. Phys. Rev. Lett. 106, 

143002 (2011).
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-
tron wavepacket just after it tunnels out of the atom.  We reconstruct this distribution from the electron momenta 
measurements obtained at the detector and compare it to standard theoretical models.  We also explore the creation 
of Rydberg states that occurs after tunnel ionization if the electron does not gain enough energy to escape the Cou-

ellipticity of laser light and shows excellent agreement with a prior experiment.  

References 
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The Linac Coherent Light Source (LCLS) located at the SLAC National Accelerator Laboratory at Stanford 
University is an x-ray laser with approximately one billion times higher brightness than any previous laboratory 

which have explored x-ray matter interactions in this new regime.  These include nonlinear x-ray absorption, ultra-
fast experiments exploring the few-femtosecond time scale of Auger relaxation, and coherent x-ray-atom interac-
tions. [2-4]. 

References 
[1] P. Emma et al., Nature Photonics 4, 641 (2010).
[2] P. H. Bucksbaum, R. Coffee, N. Berrah, in Advances In Atomic, Molecular, and Optical Physics, E. Arimondo, P. R. Berman, 
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Beyond atomic physics Invited Talk 

Quantum interfaces: from ultra-cold atoms to solid-state 

Mikhail Lukin 

Physics Department, Harvard University, Cambridge, MA, 02138, USA  
lukin@fas.harvard.edu 

We will discuss several recent advances aimed at combining quantum control over ultra-cold atoms and solid-
state atom-like systems with nanoscale optical and mechanical resonators. Novel applications of these techniques 
ranging from quantum nonlinear optics to nanoscale quantum sensing will be described. 
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Precision measurement is a hallmark of physics but the small length scale (~ nanometer) of elementary biologi-
-

logical molecules. Here, we highlight the recent developments in single molecule nanometry where the position of 

molecules can be determined with ~0.3 nmprecisionat ~1 millisecond time resolution [2], and how these new tools 
are providing fundamental insights on how motor proteins move on cellular highways [3]. We will also discuss 

respectively, allowing us to correlate movements of multiple components. Finally, we will discuss recent progress 

References 

300 (5628), 2061-2065 (2003). 
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-
cavity optomechanics [1]. 

Using on-chip micro-cavities that combine both optical and mechanical degrees of freedom in one and the same de-
vice [2], radiation pressure back-action of photons is shown to lead to effective cooling of the mechanical oscillator 
mode. In our research we prepare the oscillator with high ground state probability using cryogenic precooling to ca. 

ground state occupation). Moreover it is possible in this regime to observe quantum coherent coupling in which 
the mechanical and optical mode hybridize and the coupling rate exceeds the mechanical and optical de-coherence 
rate [3]. This accomplishment enables a range of quantum optical experiments, including state transfer from light 
to mechanics using the phenomenon of optomechanically induced transparency [4]. 

References 
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semiconductor microcavities (the so-called exciton-polaritons) are a powerful workbench for the study of many-
body effects in a novel non-equilibrium context [1]. 

and vortices. I will then illustrate recent theoretical studies in the direction of generating strongly correlated photon 
gases, from Tonks-Girardeau gases of impenetrable photons in one-dimension [2], to quantum Hall liquids in the 

Advantages and disadvantages of the different material platforms in view of generating and detecting strongly 
correlated gases will be reviewed, in particular laterally patterned microcavity and micropillar devices in the optical 
range, and circuit-QED devices in the microwave domain. 
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molecules with attosecond precision. Here, we demonstrate attosecond control of collective electron motion in 
plasmas driven by extreme intensity (~1018 W.cm–2

tightly focused at the interface between vacuum and a solid-density plasma, where they launch and guide subcycle 
motion of electrons from the plasma with characteristic energies in the multi-kiloelectronvolt range — two orders 
of magnitude more than has been achieved so far in atoms and molecules. The basic spectroscopy of the coherent 
extreme ultraviolet radiation emerging from the light-plasma interaction allows us to probe this collective motion of 
charge with sub-200 attosecond resolution. This is an important step towards attosecond control of charge dynamics 
in laser-driven plasma experiments.

Reference 
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In optomechanics, laser light is used for cooling and control of the vibrations of micromechanical oscillators, 
with many similarities to the cooling and trapping of atoms. It has been proposed that laser light could also be used 
to couple the motion of atoms in a trap to the vibrations of a mechanical oscillator [1]. In the resulting hybrid opto-
mechanical system the atoms could be used to read out the oscillator, to engineer its dissipation, and ultimately to 
perform quantum information tasks. 

We have realized a hybrid optomechanical system by coupling ultracold atoms to a micromechanical mem-

surface, resulting in optomechanical coupling as proposed in [1]. We observe both the effect of the membrane 
vibrations onto the atoms as well as the backaction of the atomic motion onto the membrane. By coupling the 
membrane to laser-cooled atoms, we engineer the dissipation rate of the membrane. This mechanism can be used 
to sympathetically cool the membrane with the atoms. 
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Conditional measurements on the undriven mode of a two-mode cavity QED system prepare a coherent super-
position of ground states that generate quantum beats [1]. The continuous drive of the system, through the phase 
interruptions from Rayleigh scattering, induces decoherence that manifests itself in a decrease of the amplitude 
and an increase of the frequency of the oscillations [2]. Our recent experiments implement a feedback mechanism 
to protect the quantum beat oscillation. We continuously drive the system until we detect a photon that heralds the 
presence of a coherent superposition. We then turn the drive off to let the superposition evolve in the dark, protect-
ing it against decoherence. We later turn the drive back on to measure the amplitude, phase, and frequency of the 

-
ported by NSF, CONACYT, and the Marsden Fund of RSNZ. 
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Coherent control and delocalization of single trapped atoms constitute powerful new resources for quantum 
technologies. We will report on a single-atom interferometer that uses spin-dependent periodic potentials to co-
herently split and recombine particles with spatial separations of up to 24 lattice sites, equivalent to more than 
10 m. The interferometer geometry can be reprogrammed in a digital manner by freely assembling basic coherent 
operations at discrete time intervals; this allowed us to contrast different geometries and to develop a geometrical-
analogue of the well-known spin-echo refocusing. We tested the interferometer by probing external potential gra-
dients, achieving with single atoms 5 × 10–4 precision in units of gravitational acceleration g. Furthermore, a novel 
scheme for spin-dependent optical lattices is presently underway, with which we expect to reach splitting distances 
of 1 mm.

This coherent control of single-atom wave packets gives us a new way to investigate and exploit interaction 
effects between atoms; for instance, molecular bound states of two atoms are predicted to occur in quantum walk 
experiments as a result of matter-wave interference [1]. 

Reference
[1] A. Ahlbrecht, A. Alberti, D. Meschede, V. B. Scholz, A. H. Werner, R. F. Werner, Bound Molecules in an Interacting Quantum 
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We report on the implementation of a Bragg-type interferometer operated with a chip-based atom laser for 
Rubidium 87Rb. With the chip based atom laser we can generate thermal ensemble as well as Bose-Einstein conden-
sates (BEC) [1]. With the help of delta kick cooling [2], implemented via the atom chip, we can further slow down 
the expansion of thermal and condensed atoms. In addition, the chip allows to transfer atoms in the individual Zee-

extend the observation of a BEC of only 10000 atoms to macroscopic time scales approaching two seconds. Ben-

interferometer over hundreds of milliseconds to study the coherence and to analyze the delta kick cooling with the 
help of the observed interference fringes. This experiment can be considered as a double slit experiment in micro-

(TU Darmstadt), and W. P. Schleich (Univ. Ulm).
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We report progress, both theoretical and experimental, toward an atom interferometric measurement of MYb, 

interferometer in free space many potential sources of systematic error cancel. For part per billion precision, such 
an interferometer requires two of the arms to be coherently accelerated. Experimental progress includes improved 

5 atom), nearly pure condensates of 174Yb and 
faster cycle times for a low-momentum prototype interferometer. Theoretical progress includes new techniques for 

to precision BEC interferometry [1]. These techniques are also valid for waveguide interferometers. A comparison 
of various coherent acceleration schemes will also be presented.
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Quantum feedback control of atomic coherent states

Ralf Kohlhaas1, Thomas Vanderbruggen1, Andrea Bertoldi1, Simon Bernon1,  
Alain Aspect1, Arnaud Landragin2, and Philippe Bouyer1,3,*

1. Laboratoire Charles Fabry, Institut d’Optique, CNRS, Université Paris-Sud,  
Campus Polytechnique, RD 128, 91127 Palaiseau cedex, France  

2. LNE-SYRTE, Observatoire de Paris, CNRS and UPMC,  
61 avenue de l’Observatoire, F-75014 Paris, France  

 
 

*philippe.bouyer@institutoptique.fr 

Quantum superposition states are under constant threat to decohere by the interaction with their environment. 
Active feedback control can protect quantum systems against decoherence, but faces the problem that the measure-
ment process itself can change thequantum system. The adaptation of the measurement strategy to a given stabili-
zation goal is therefore an essential step to implement quantum feedback control. Here, we present the protection 
of a collective internal state of an atomic ensemble against a simple decoherence model. A coherent spin state is 
prepared and exposed to a noise which randomly rotates the state on the Bloch sphere. We use weak nondestruc-

feedback. This method is used to increase the coherence lifetime of the initial superposition state by about one order 
of magnitude. 
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The world’s leading atom interferometers are housed in bulky atomic fountains. They employ a variety of tech-
niques to increase the spatial separation between atomic clouds including high order Bragg diffraction. The largest 
momentum transfer in a single Bragg beamsplitter has been limited to 24  by laser power and beam quality [1]. 
We present an atom interferometer in a 40 cm optical cavity to enhance the available laser power, minimize wave-
front distortions, and control other systematic effects symptomatic to atomic fountains. We expect to achieve spatial 
separations between atomic trajectories comparable to larger scale fountains within a more compact device. We 
report on progress in developing this new interferometer using cold Cs atoms and discuss its prospects for exploring 
large momentum transfer up to 100 
demonstration of the gravitostatic Aharonov-Bohm effect [2].

References 
[1] Holger Müller, Sheng-wey Chiow, Quan Long, Sven Herman, and Steven Chu. “Atom Interferometry with up to 24-Photon-

Momentum-Transfer Beam Splitters”. Phys. Rev. Lett.100(18), 180405, (2008). 
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Coherent population transfer of cold 87

Hoon Yu, Mi Hyun Choi, Seung Jin Kim, and Jung Bog Kim

We consider counter-intuitive light pulses to transfer atoms coherently from the ground state to another ground 
87Rb at-

oms in the ground state of 5S (F=2), 
to measure amount of transferred atoms. We optimized experimental parameters - width of pulses, power of each 
pulse, delay time between two pulses, and the two photon detuning- until the effective Rabi frequency of over-

Reference 
[1] J. B. Kim, J. Lee, A. S. Choe, and Y. Rhee, “Geometrical representation of coherent-excitation methods using delayed and 

detuned lasers”, Phys. Rev. A 55, pp. 3819-3825 (1997).
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The measurement of atomic transition frequencies with Ramsey interferometry has been established as an im-
portant tool, not only for general spectroscopic purposes but also to determine frequency standards on which atomic 
clocks are based on. Improvements of Ramsey interferometry via quantum effects are therefore highly desirable. 
Here we present methods for quantum enhanced Ramsey-type interferometry using trapped ions or neutral atoms 
which employ highly non-classical probe-states and decoherence free subspaces [1]. Our methods drastically im-
prove the measurement uncertainty beyond what is possible classically in the presence of experimental noise and 

-
perimental technology and can lead to improved spectroscopic methods with important applications in metrology.
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The concept of entanglement has evolved from a controversial building block of quantum mechanics to the 
basic principle of many highly topical applications. In optics, parametric down-conversion in nonlinear crystals 
has become one of the standard methods to generate entangled states of light. Bose-Einstein condensates of atoms 
with non-zero spin provide a mechanism analogous to parametric down-conversion. The presented process acts as 

number of atoms. At a total of 10000 atoms, we observe a squeezing of the number difference of -7 dB below shot 
-

sion interferometry. We show that its interferometric sensitivity beats the standard quantum limit, the ultimate limit 
of unentangled states.
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We discuss an all-optical Talbot-Lau interferometer for nanoparticles which consists of 3 pulsed VUV laser 
gratings [1]. The short laser pulse duration of about 7 ns allows us to address the particles in the time domain, which 
is a new concept for interferometry of complex matter. The interferometer uses pulsed standing laser light waves as 
diffracting structures. The light pulses can act as absorptive gratings for matter waves, as soon as the wavelength 

standing light wave. In contrast to material masks, such gratings can be operated in a pulsed mode, which makes 
the motion of the particles negligible, in many cases. This establishes a new kind of velocity independent interfer-
ometer for molecules and clusters, which has the potential to interfere particles up to 106amu and more. This will 
be relevant for testing spontaneous quantum localization models [2]. 

References 
[1] Nimmrichter S., et al., , 13, 075002 (2011). 
[2] Nimmrichter S., et al., Phys. Rev. A, 83, 043621 (2011).
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SYRTE has previously built and extensively characterized a six-axis atom inertial sensor [1,2]. In particular, 
the uses of a four pulse sequence gyroscope and large momentum transfer beam splitter to enhance its area were 
investigated [3]. A new interferometer has now been developed at SYRTE based on these study, allowing a 300-fold 
increased area and enhanced scaling to the rotation; it should in addition allow for more robust large momentum 
transfer. Details of the architecture and preliminary characterizations will be presented. This very high sensitivity 
opens important perspectives in particular for fundamental physics, allowing for example improved tests of atom 
neutrality.
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[1] B. Canuel et al., “Six-axis inertial sensor using cold-atom interferometry”, Phys. Rev. Lett. 97, 010402 (2006).
[2] A. Gauguet et al., “Characterization and limits of a cold atom Sagnac interferometer”, Phys. Rev. A 80, 063604 (2009).
[3] T. Lévêque et al., “Enhancing the area of a Raman atom interferometer using a versatile double-diffraction technique”, Phys. 

Rev. Lett. 103, 080405 (2009).



62 Mo-011 Atom interferometry

Mahdi Ammar1,3,*, Landry Huet1,2, Jérôme Estève3, Chris Westbrook4, Isabelle Bouchoule4, Jean-Paul Pocholle1, 
Jakob Reichel3, Christine Guerlin1,5, and Sylvain Schwartz1

1. Thales Research and Technology, 1 avenue Augustin Fresnel, 91767 Palaiseau, France 
 

 
4. Laboratoire Charles-Fabry Institut d’Optique, Avenue Augustin Fresnel, 91127 Palaiseau, France 

*mahdi.ammar@thalesgroup.com 

We propose a new design of a cold atom gravimeter integrated on chip. The chosen architecture of the sensor is 

F = -1> and 
| F=2,mF

was demonstrated with a Bose-Einstein Condensate (BEC) [1] might be applied also to thermal atoms which will 

than imaging techniques. We have studied theoretically the various physical factors limiting the ultimate perfor-
mances of such an inertial sensor and we propose to demonstrate soon an experimental proof of principle.
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-
pressed by 1-3 orders of magnitude independent of the environmental temperature. The suppression is based on the 

1 2) which are exposed to the same 

syn ∝ 1 12 2) largely immune to the blackbody radia-
tion shift. For example, in the case of 171Yb+ it is possible to create a synthetic-frequency-based clock in which the 
fractional blackbody radiation shift can be suppressed to the level of 10–18 in a broad interval near room temperature 
(300 ± 15 K). We also propose a realization of our method with the use of an optical frequency comb generator 

1 2 syn is generated as one of the components of the comb 

11-02-01240), Minobrnauka (GK 16.740.11.0466), RAS, Presidium of the SB RAS. D.V.B. was also supported by 
the Presidential Grant (MK-3372.2012.2).
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We investigate the radio-frequency quantum engineering of nuclear spins for an ultra narrow optical clock 
transition based on the fermionic 87Sr, 171Yb and 199Hg species. A Zeeman-insensitive optical clock transition is pro-

relative uncertainty below 10–18 level. 
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We present a detailed study of optical pumping in a freely evolving cloud of cold Cs atoms launched in an 
F F’ = F transition, a high degree of atomic spin 

polarisation was achieved by accumulation of the population in the mF = 0 sublevel of the ground state. Such a 
scheme has been proposed and demonstrated for thermal beam clocks [1], but the technique has not been widely 
implemented for normal operation. In the case of cold atoms the random scattering of photons associated with opti-

experimentally the dynamics of the pumping process and the related heating mechanism and considered factors 
limiting the achievable spin polarisation. This technique has been implemented in a Cs fountain clock, giving a 

Reference 
[1] G. Avila, V. Giordano, V. Candelier, E. de Clercq, G. Theobald and P. Cerez, “State selection in a caesium beam by laser-diode 
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We have constructed a compact frequency standard using an intra-cavity sample cold cesium atoms. The results 
show the potential use of clocks with this operation if compared to a cesium beam standard, since all the steps 
are sequentially performed in the same position of space. Due to the fact that the atomic standard is based on an 
expanding cloud of atoms, it has no stringent size limitations and one can imagine the possibility of a clock even 
more compact. For the next step of our ongoing project we are developing a system containing all the laser sources, 
microwave source and cavity in a single metallic block. The mobile atomic standard based on cold atoms can be an 
important contribution to a primary standard of high relevance, and a possible strategic product with a broad range 
of applications.

Reference 
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+

Th-229 nucleus

O. A. Herrera-Sancho, M. V. Okhapkin, Chr. Tamm, and E. Peik

The possibility to realize a nuclear clock based on laser excitation of the isomeric state in Th-229 [1,2] has 
motivated experiments with thorium ions in solids and in ion traps. To facilitate the search for the nuclear transi-
tion within a wide uncertainty range about 8 eV, we investigate two-photon excitation in the dense electronic level 
structure of Th+, which enables the nuclear excitation via a resonantly enhanced electronic bridge process [3]. In 
our experiment, the Th+ resonance line at 402 nm from the (6d27s)J d7s7p)J

step of a two-photon excitation, we have observed several previously unknown levels of Th+ around 8 eV. 
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The unprecedented accuracy in time promises new applications like relativistic geodesy for exploration of oil 
and minerals, fundamental tests of general relativity and synchronization for long base line astronomical interfer-
ometry. In fact very recently, space has also opened up as a new avenue for precision measurements based on cold 
atoms. We are setting up a mobile frequency standard based on strontium (Sr) in a blue detuned optical lattice. 
We have a 2D-3D MOT (magneto-optical trap) setup where initially cooled atoms in 2D are collected in the 3D 
MOT. Very recently we have observed an effect of our 2D MOT on our 3D MOT where atom number increases 
approximately by a factor of 10. However, these are only preliminary results and a thorough optimization as well 
as characterization will be done in due course of time. An up to date progress on our activities will be presented.

Atomic clocks Mo-018
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Optical lattice clocks [1] are among the most accurate clocks to date and have a huge potential for further 
improvement, owing to their unique possibility to combine the advantage of the Lamb-Dicke regime spectroscopy 
(drastic reduction of shifts associated with the dynamics of external variables) together with the possibility of 
probe a large number of quantum absorbers simultaneously. Among atoms studied in optical lattice clocks, mercury 
has very low sensitivity to blackbody radiation, making it an excellent candidate for achieving accuracies in the 
low 10–18, for testing the stability of natural constants or for demonstrating new applications, such as relativistic 

mid-10–15 range [3]. These results demonstrate that the considerable challenge due to the need for deep-UV laser 
light can be met to make a new clock with extreme accuracy. 

References
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of a Ca+ ion clock
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Instability and systematic shifts of optical clocks are rapidly evaluated by referring another stable optical clock. 
Following an all-optical frequency comparison of two remote 87Sr lattice clocks (one at NICT and the other in Uni-
versity of Tokyo) in 10-16 level [1], we conducted an in-laboratory frequency comparison between a single calcium 
ion clock and the 87Sr lattice clock. The 87Sr lattice clock in NICT has total systematic uncertainty of 5×10-16 and the 
stability reaches 5×10-16 in 1000 s. Thus the lattice clock worked as an optical frequency reference for the evalu-
ation of our lately improved Ca+ clock, which currently equips a magnetic shield to reduce Zeeman shift [2]. The 
frequency ratio of f (Ca+ f (Sr) obtained with the optical comparison has statistical uncertainty of 1×10-15 in 1000 s 
and is consistent with separate absolute frequency measurements based on International Atomic Time, where the 
10-15
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Transition frequencies of cold molecules must be accurately evaluated to test the variance in the proton-to-
electron mass ratio. Measurement of the X2 v,N) = (0,0)-> (1,0),(2,0),(3,0),(4,0) transition frequencies of optically 
trapped 174Yb6Li molecules are the promising method to achieve this goal [1]. 174Yb6Li molecules are produced via 
Feshbach resonance or optical association, and forced to the (v,N) = (0,0) state by stimulated Raman transition. The 
Stark shift induced by trap laser is eliminated by choosing appropriate frequencies (magic frequency). For 174Yb6Li 
molecule, the magic frequency exists also in the far-off resonant area. Using this magic frequency, the Stark shift 
is less than 10-16 if the trap laser frequency is detuned from the magic frequency with 1 MHz. The transition is 
observed by Raman transition, using two lasers. Also the Stark shift induced by Raman lasers can be eliminated, 
because the Stark shifts induced by two Raman lasers cancel each other, when the magic frequency exists between 
both Raman laser frequecnies. 
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High precision cold atom interferometers have important applications in many fundamental physics experi-
ments[1]. Using dual-species atom interferometers to measure the gravity synchronously can make a precision test 
of the weak equivalence principle. Because 85Rb and 87Rb atoms have similar Raman laser wave vectors, many 

in space, the free evolution time can be greatly extended[2]. We analyze the differential phase noise of an 85Rb-87Rb 

=3.2×10-13 =3.4×10-15 after one day’s integration.
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111Cd atoms will be pre-
sented. The concept is based on the proposal of Fry et al. formulated for 199Hg [1]. In the presented experiment, 
the 111Cd2 molecules are produced in a pulsed supersonic beam. Next, the 111Cd2 molecules are irradiated by two 
laser pulses and dissociated in a process of stimulated Raman passage. As a result, two entangled 111Cd atoms with 
anti-parallel nuclear spins are produced. Orientation of the nuclear spins is recorded using spin-state-selective two-
photon excitation-ionization method [2]. Current status of the preparation stage of the experiment will be reported. 
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We present a gravimeter based on the use of Bragg diffraction to drive atomic beam splitters and mirrors. Tra-
ditionally, gravimeters based on cold atoms have used Raman transitions for the optical elements, a process that 
drives transitions between internal atomic states which are highly sensitive to environmental perturbations (e.g. 
see [1,2]).Here we show that atoms extracted from a magneto-optical trap with an accelerating optical lattice are a 

detection. Our current device, based on a T = 60ms, 4 g g of 2 × 10–9 in 
15 minutes. We discuss a number of improvements which should push this device into the Gal regime and beyond. 
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the electrodynamics corrections of atomic energy levels, as due to limiting conditions imposed by the surface. The 
realm of non-zero temperature corrections, which can be interpreted as a coupling of an atomic detector with the 

situation (overheated surface, relatively to the remote environment). We are presently performing experiments at 

the interaction, solely governed by the surface temperature.
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Ultra-precise measurements of the gyromagnetic factor (g-factor) of a bound electron in highly charged me-
dium-heavy ions provide a sensitive test of quantum electrodynamics in bound systems (BS-QED) under extreme 
conditions. To determine the g-factor the Larmor frequency and the free cyclotron frequency of a single ion are 
measured in a triple Penning-trap setup. The continuous Stern-Gerlach effect allows an indirect measurement of the 
Larmor frequency. The free cyclotron frequency is determined by the measurement of the three motional eigenfre-
quencies. In this context the g-factor of hydrogenlike silicon 28Si13+ has been measured with a relative uncertainty 

–10 g-factor measurements of a 
hydrogenlike and a lithiumlike system with the same nucleus offer a test of the electron-electron interaction calcu-
lations. For this reason the g-factor measurementof 28Si11+ is currently under progress. The measurement procedure 
and results are presented. 

Reference 
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Parity violation (PV) effects have so far never been observed in chiral molecules. Originating from the weak 
interaction, PV should lead to frequency differences in the rovibrational spectra of the two enantiomers of a chiral 

compare the rovibrational spectra (around 10 m) of two enantiomers, recorded using the ultra-high resolution 
spectroscopy technique of Doppler-free two-photon Ramsey fringes in a supersonic molecular beam. With an alter-
nate beam of left- and right-handed molecules and thanks to our expertise in the control of the absolute frequency of 
the probe CO2 lasers, we should reach a fractional sensitivity better than 10–15, on the frequency difference between 
enantiomers [1]. 

We will review our latest results on the high-resolution spectroscopy, either in cell or in a supersonic beam, of 
methyltrioxorhenium [2], an achiral test molecule from which our collaborators are currently synthesizing chiral 
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Entanglement is the essential feature of quantum mechanics. Its importance arises from the fact that observers 

by classical statistics. In order to make it a useful resource for, e.g., scalable long-distance quantum communication, 
heralded entanglement between distant massive quantum systems is necessary. Here we report on the generation 
and analysis of heralded entanglement between spins of two single Rb-87 atoms trapped independently 20 meters 

inequality [3,4]. 
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We present a measurement of the ratio h mRb between the Planck constant and the mass of 87Rb atom us-
–10, is 

–1 = 137.035 999 037 (91). Using this determination, we obtain a theoretical value of the electron 
anomaly ae = 0.001 159 652 181 13 (84) which is in agreement with the experimental measurement of Gabrielse  
(ae = 0.001 159 652 180 73 (28)). The comparison of these values provides the most stringent test of the QED. 

anomaly. 
Using this method, it seams possible to further reduce systematic effects and improve the precision of the mea-

surement by a factor 7. 
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Search for the permanent electric dipole moment (EDM) of the elementary particles has been of considerable 
interest in the recent decades. Laser cooling and trapping technique reduces the systematic error of the EDM mea-
surement due to the v × E
by two or three orders of magnitude, when compared to the conventional atomic beam experiments. This longer 
interaction time substantially improves the sensitivity of the EDM measurement. Additionally, Francium (Fr) being 
the heaviest alkali atom has a large enhancement factor of about 900. The laser cooled Fr atoms are promising for 
the measurement of the e-EDM. As the Fr production requires the cyclotron operation which being expensive for a 
continuos operation, we work with Rb atoms and the Rb beam is utilized for optimizing the operation parameters 
of the entire apparatus. We have developed a double magneto-optical trap (MOT) system and trapped Rb atoms. 
We have also observed the saturated absorption spectra of iodine molecules at 718 nm. The high resolution signal 
is used to stabilize the laser frequency to the D2 transition of Fr atom. 
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p
as with a proton (p). This opens the way to measuring the p magnetic moment (whose uncertainty has essentially 
not been reduced for 20 years) at least 103 times more precisely. 
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We report an intracavity scheme for diode laser based two-photon spectroscopy [1]. To demonstrate generality, 
three 133

102 times better signal-to-noise ratio than previous work1 with 10-3 times less laser power, revealing some previ-

optical frequency reference. Our approach is applicable for most of the two-photon spectroscopy of alkali atoms. 

measured frequencies (within 3 kHz, two months) is encouraging for considering the application of our scheme to 
be a hand-size diode-laser based secondary frequency standard.

Reference 
[1] Y.-Y. Chen, T.-Wei Liu, C.-M. Wu, C.-C. Lee, C.-K. Lee and W.-Y. Cheng, “High-resolution 133
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Isaac Fan1,*, Yu-Yuan Lee1, Hsuan-Chen Chen2, Shih-En Chen1, and Li-Bang Wang1

Jow-Tsong Shy1,2, and Yi-Wei Liu1,†

 
 

A muonium atom (Mu) is a bound state formed by a muon ( +) and an electron, offering a structureless two-
body leptonic system whose energies can be evaluated with high accuracies by the bound-state QED. The 1S – 2S 
transition of Mu is of particular importance because the muon mass and the ground-state Lamb shift contribution 
can be derived from it imposing a cross-check on the recent muonic hydrogen 2S – 2P Lamb shift measurement 
in which a smaller than expected proton size was found [1]. The current experimental resolution of Mu v1S–2S is 

Mu in vacuum, (b) the frequency chirps in the pulsed light source, and (c) the precision of 
the reference line. In this conference, we present our effort in improving the precision of the 732 nm reference line 
in molecular iodine that is suitable for the Mu v1S–2S spectroscopy. 
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matter-wave diffraction pattern from stochastically arriving single molecules. A slow molecular beam is created via 
laser evaporation of the molecules from a glass window. The molecules traverse an ultra-thin nanomachined grat-
ing at which they are diffracted and quantum delocalized to more than 100 µm before they are captured on a quartz 

provides us with single molecule sensitivity and we can determine the position of each molecule with an accuracy 
of 10 nm. This new setup is a textbook demonstration but it also enables quantitative explorations of the van der 
Waals forces between molecules and material gratings. An extrapolation of our present experiments to even thinner 
gratings is expected to also enlarge the range of nanoparticles that are accessible to advanced quantum experiments.
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Atomic magnetometer sensitivity is a limiting factor in precision measurements, medical imaging, and indus-
trial applications. In particular, searches for permanent electric dipole moments (EDMs) require sensitive magne-
tometers which interact minimally with the primary samples. Techniques based on spin-polarized gases have been 

magnetometers (e.g. alkalis or 199Hg) also suffer from material problems at the high voltages and low tempera-
tures common in EDM experiments. We propose as a remedy real-time optical magnetometry based on spectros-
copy of two-photon transitions in spin-polarized 129Xe. Thermal, diffusive, and dielectric properties of xenon allow 

coherence times and a low neutron capture cross-section are favorable in neutron EDM experiments. We report 
on preliminary work validating the technique in 171Yb and a parallel effort measuring the 129Xe EDM, and survey 
applications to contemporary neutron EDM measurements. 
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Large scale CIV3 calculations of excitation energies from ground state as well as of oscillator strengths and 
-

els of the terms belonging to the (1s22s22p6)3s23p2, 3s3p3, 3p4, 3s23p3d, 3p33d, 3s3p3d2, 3s23d2, 3s3p23d, 3s3p24s, 
3s23p4s, 3s23p4p, 3s23p4d and 3s2

interaction (CI) wavefunctions. The relativistic effects in intermediate coupling are incorporated by means of the 

are in excellent agreement with the data compiled by NIST and the experimental lifetimes, wherever available. 
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p4(3P)3p 2Do, 4Do and 2Po

investigated theoretically. Large-scale calculations are carried out using the atsp2k [1] and grasp2k [2] packages 

non-relativistic and relativistic models, the set of many-electron states selected to form the total wave function is 
constructed systematically using the “single and double multireference” approach. In the framework of MCHF, the 
relativistic effects are taken into account, either in the Breit-Pauli (BP) approximation using the MCHF orbitals or 

converted to Dirac spinors using the Pauli approximation [3]. The MCHF-BP, RCI and MCDF results are in sat-
isfactory agreement with experiments, but differ from the MCHF calculations. It shows that, in a system like F I, 
relativistic effects can be crucial but do not require the use of a fully relativistic method. 
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We use two Er+ -
form spectroscopy without moving parts [1]. The measurements are done in real time and take less than 100µs to 
record an interferogram. We work with two femtosecond Er+

lasers, thereby increasing the signal to noise ratio. The interferogram is taken with a 20 cm long gas cell, containing 
a mixture of acetylene and air at atmospheric pressure, and is fast-Fourier-transformed to obtain the spectrum. Dual 
comb spectroscopy has the multiplex advantages over other comb spectroscopies [2]; it requires only a single fast 
photodiode (and not a CCD array) and enables acquiring spectra in real time. We acknowledge Qatar Foundation, 
NPRP grant 09 - 585 - 1 – 087 and the NSF grant No. 1058510.
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We present a theoretical and experimental study of polarization self-rotation of an elliptically polarized light 
for a Doppler-broadened rubidium atomic cell. The accurate density matrix equations are solved numerically as a 
function of velocity and elapsed time. Then, the density matrix elements are averaged over atomic transit times and 
a Maxwell-Boltzmann velocity distribution. We calculate the rotation angle as a function of detuning for various 
laser intensities and polarizations, and compare the calculated results with experimental results. 
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Seung Jin Kim, Hoon Yu, Ye Lin Moon, and Jung Bog Kim

We observed high contrast transparency signal in the Rb cell with the buffer gas, 50 torr Ne. We used phase 
matched two co-propagating lasers (CPT laser) which have linearly orthogonal polarization to make CPT state. 

87

-

observe that the transparency signal has more slow decay shape near resonant region due to more decay channels.
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Avoiding laser frequency drifts is a key issue in many atomic physics experiments. Techniques usually involve 
either the generation of dispersive atomic lineshapes through frequency modulation of absorptive lines or using 
differential magnetic shifts of Zeeman sub-levels. Here we describe a simple and robust technique to lock the laser 
frequency using nonlinear properties of an atomic vapor to produce the dispersive signal [1]. The atomic vapor be-

the laser frequency is, thus modifying the beam power transmitted through an aperture after the vapor cell. Scan-
ning the frequency across resonance thus results in a dispersive lineshape that can be used as an error signal to lock 
the laser frequency. This technique exhibits performance similar to usual ones with the advantage of not needing 
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The nitrogen-vacancy (NV) color center in diamond consists of a substitutional nitrogen atom in the diamond 
lattice adjacent to a missing carbon atom (a vacancy). The ground state of the negatively charged NV- center can 
be optically spin-polarized and has a long transverse spin relaxation time, which makes it useful for applications 

the recent interest in developing these applications, our understanding of the NV- basic properties is incomplete. 
Theoretical models disagree on the details of the NV- energy level structure and predict additional energy states that 
have not been observed. We have performed broadband absorption spectroscopy out of the metastable 1E NV- state 

provide insight on how NV- singlet states are coupled to phonons and shed light on the energy level structure and 
optical pumping mechanism.
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The principle of photoionization microscopy has been known since the early 80’s [1]. In theory it should allow 
for direct observation one of the most elusive quantum objects - the wave function. Nearly three decades later, with 
the emergency of the velocity map imaging technique [2], we present an experimental proof of this statement. In 

ensures lowering of the potential barrier and leads to autoionization. The ionized electrons are projected on a detec-
tor, where they create interference rings due to the existence of different trajectories to the detector. The number of 
dark fringes equals the parabolic quantum number n1

agree with quantum calculations based on wavepacket propagation. 
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Many atoms and molecules with interesting spectroscopic properties can not be laser cooled owing to their 
complex internal level structure. We present a universal spectroscopy system based on sympathetic cooling of a 
spectroscopy ion through a co-trapped logic ion which is laser cooled [1]. Spectroscopy is performed by monitor-
ing the effect of photon recoil on the motional state of the two-ion crystal. Starting from the motional ground state, 
scattering of photons near the resonance of a spectroscopy transition leads to photon recoil heating which can be 

+ spec-
troscopy and Mg+ logic ion. The use of non-classical motional states to enhance the sensitivity will be discussed. 
The setup is versatile and will allow performing precision spectroscopy of other metal ions relevant to the search 
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We have developed a collection of techniques for generating large disordered distributions of quantized vorti-
ces in highly oblate Bose-Einstein condensates (BECs) for studies of two-dimensional quantum turbulence. In our 
experimental approach, we generateturbulent states by exciting the condensate either through modulating the trap-

developing methods for building up vortex distributions core bycore with control over winding number and vortex 
positions. These vortex manipulation techniques will allow us to study the vortex dynamics and interactions that 
are involved in two-dimensional quantum turbulence. 

Supported by US NSF and US DOE SCGF. 
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By generalizing the Green’s function approach proposed by Beliaev [1, 2], we investigate the effect of quantum 
depletion on the energy spectra of elementary excitations in an F = 1 spinor Bose-Einstein condensate, in particular, 
of 87

in the spin-wave excitations with quadratic dispersion relations. The enhancement factor turns out to be the same 

lifetime of these magnons in a 87Rb spinor BEC is shown to be much longer than that of phonons. We propose an 
experimental setup to measure the effective mass of these magnons in a spinor Bose gas by exploiting the effect of 
a nonlinear dispersion relation on the spatial expansion of a wave packet of transverse magnetization. This type of 
measurement has practical applications, for example, in precision magnetometry. 
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We have experimentally studied the decay of a BEC of metastable 4He atoms in an optical dipole trap, for atoms 
in the m = +1 and m

stat(0.6)sys × 10–27 cm6s–1, which is interesting in the context of 
universal few-body theory. 

In the regime where two- and three-body losses can be neglected, the total number of atoms decays expo-
4

3
 and the 

condensate decays much faster, and non-exponentially [2]. We have observed this behavior [3], which should be 
present for all BECs in thermal equilibrium with a considerable thermal fraction. 
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We investigate universal thermodynamics and quantum criticality of spin-1 bosons with strongly repulsive 
density-density and antiferromagnetic spin-exchange interactions in a one-dimensional harmonic trap. From the 

pairs or a fully spin-aligned Tonks-Girardeau gas depending on the polarization. We describe how the scaling be-

diagram. We further show that at quantum criticality the dynamical critical exponent z = 2 and correlation length 
exponent. v
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We measure the momentum distribution of one-dimensional quasi-BEC using focusing techniques. By varing 
the temperature and density, the crossover from ideal Bose gas to quasi-condensate is probed. We model our data 

in situ
measurements [2]. We also compare our results with Quantum Monte Carlo calculations. 
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Ultracold and quantum degenerate mixtures of two or more atomic species open up many new research av-
enues, including the formation of ultracold heteronuclear ground-state molecules possessing a permanent electric 
dipole moment. The anisotropic, long range dipole-dipole interactions between such molecules offers many poten-
tial applications, including novel schemes for quantum information processing and simulation. Our goal is to create 
ultracold ground-state RbCs molecules using magneto-association on a Feshbach resonance followed by optical 
transfer to the rovibronic ground state. The pre-requisite to this approach is the attainment of a high phase space 

-
est results from our experiment, including the realisation of a quantum degenerate mixture of 87Rband 133Cs [1] and 
a detailed study of the Feshbach spectrum of an ultracold 85Rb–133Cs mixture. 

Reference 
[1] D. J. McCarron, H. W. Cho, D. L. Jenkin, M. P. Koeppinger and S. L. Cornish, 

and 133Cs, Phys. Rev. A 84 011603 (2011). 



82 Mo-051 Bose gases

Yun Li*, Lev P. Pitaevskii, and Sandro Stringari

 
*li@science.unitn.it 

Dresselhaus couplings. The phase diagram of the system at T = 0 is discussed with special emphasis to the role of 
-

pling we predict the occurrence of a characteristic tri-critical point separating the spin mixed, the phase separated 
and the zero momentum states of the Bose gas. The corresponding quantum phases are investigated analyzing the 
momentum distribution, the longitudinal and transverse spin-polarization and the emergence of density fringes. The 
effect of harmonic trapping as well as the role of the breaking of spin symmetry in the interaction Hamiltonian are 
also discussed. 
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The stability of the half-quantized vortex lattice in the rotating spin-1 antiferromagnetic Bose- Einstein con-

-
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We demonstrate the trapping of a 87Rb Bose-Einstein condensate in a very anisotropic radio-frequency (RF) 

blue detuned laser, carefully optimized to overcome Majorana losses [1]. Once condensed, the atoms are transferred 
to the dressed trap by sweeping the RF frequency and removing slowly the plug laser. In the dressed trap, the RF 
coupling is precisely determined by spectroscopy and the lifetime of the dressed atoms reaches several minutes. 

the achievement of a highly anisotropic trap. For the maximum value of the magnetic gradient, we reach the two-
dimensional regime for the degenerate gas. 

Our results represent an important step towards the realization of a ring-shape trap [2] where we will investigate 

References 
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Quantum and thermal transitions out of the 

pair-supersolid phase of two-species bosons in lattice

Chia-Min Chung, Shiang Fang, and Pochung Chen*

 

We investigate two-species bosons in a two-dimensional square lattice by quantum Monte Carlo method. We 
show that the inter-species attraction and nearest-neighbor intra-species repulsion results in the pair-supersolid 

-
litz-Thouless transition then the solid order melts via an Ising transition. 
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4He at low temperature [1] suggests the existence 
of a supersolid state of matter, i.e. a crystalline phase performing Bose-Einstein condensation (BEC). Although the 

still lacking, since it is hard to describe the competing effects of localization, due to the crystalline order, and delo-
calization, due to the zero-point motion, which characterize the atoms in quantum solids. In this work, we present 
a microscopic approach to the solid phase of 4He, based on Path Integral Monte Carlo simulations. In particular, 
we compute the one-body density matrix 1(r) of 4He crystals at different temperatures, in order to study the BEC 

presenting vacancies below a certain temperature become supersolid [3]. 
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We study resonant Bose-Fermi mixtures at zero temperature, with different relative concentrations of the bo-

system from the weak to the strong coupling limit. A repulsive interaction among bosons is introduced to provide 
stability to the bosonic component. Beyond the unitarity limit, the resonant attractive interaction supports a bound 
fermionic dimer. At the many-body level, increasing the boson-fermion coupling the system undergoes a quantum 
phase transition from a state with condensed bosons immersed in a Fermi sea, to a normal Fermi-Fermi mixture 
of the composite fermions and the bare fermions in excess. We obtain the equation of state and we characterize 
the momentum distributions both in the weakly and in the strongly interacting limits. We compare QuantumMonte 
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v = 2k
(RR) series in spin-polarized systems, a series of non-Abelian spin singlet (NASS) states is known, being the exact 
zero-energy eigenstates of a (k + 1)-body contact interaction. Explicit calculations reveal the relevance of these 
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-

affects the cloud of condensed atoms by characterizing the ground-state density and the coherence properties of 

approximation, the atomic density can become anisotropic. This anisotropic effect is especially pronounced in the 
limit of weak atom-atom interactions and of weak lattice amplitudes, i.e., when the properties of the ground state 

-
trapped case. In particular, we focus on the behavior of the antiferromagnetic vortex-antivortex order, which for the 
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Anderson Localization1

theory of weak localisation was in explaining the puzzle of negative magneto-resistance2 – as early as the 1940s it 
had been observed that electron diffusion rates in some materials can increase with the application of a magnetic 

been demonstrated in one dimensional ultra-cold atomic gases3. We present a theoretical demonstration of weak 

be imposed on the gas using the scheme of Spielman4. We show that this can lead to both positive and negative 
magneto-resistance in the gas and provide an in-depth analysis of the resulting phases.
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Faraday rotation has a long and fruitful history in atomic physics and quantum optics. It describes the rotation 
of the polarization of a light beam as it passes through a medium. The effect has been employed very successfully 
in atomic gases at room temperature and in laser cooled atomic ensembles, resulting in e.g. squeezing and entangle-
ment of atomic spins and for quantum information protocols. 

Here we demonstrate the use of Faraday rotation to non-destructively image ultra cold atomic clouds and Bose-
Einstein condensates. We show that dark ground Faraday imaging allows us to take many images of a single ultra 
cold cloud and present a detailed analysis of the destructiveness. This ability allows us to monitor e.g. the condensa-
tion process or the inherent oscillation of these atomic samples in a single experimental realization. 

Our experiments are performed with ultra cold 87Rb samples using light at a blue detuning of 0-1.5 GHz from 
the D2 transition. We present the laser system to generate the off-resonant light and show that we have obtained 
good quantitative agreement between the observed and predicted Faraday rotation both in room temperature and 
ultra cold samples. 

In the future we will extend this technique to high resolution imaging of atomic samples in optical lattices and 
to multi component quantum gases. This will allow for probing and control of these systems beyond the quantum 
noise level. 
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tool for ab initio studies of (quasi-)one-dimensional weakly-interacting Bose gases (supplemented here by self-con-
sistent treatment of radially-excited thermal modes). In the regime  <  we show [1] that this model accurately 

the regime  < few -
tuation experiments in the group of Alain Aspect (PRL 2003; EPJD 2005). We acknowledge funding from EPSRC 
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Understanding non-equilibrium processes in many-body quantum systems is an important open problem in 
physics. We study the relaxation dynamics of a coherently split one-dimensional Bose gas on an atom chip by per-
forming time-resolved measurements of the probability distribution function of matter-wave interferences. After 
(fast) splitting, the system follows a rapid evolution before reaching a quasi-steady state. This state is characterized 
by an effective temperature for the condensates relative phase degrees of freedom, which we observe to be inde-

-
responding to the splitting process. We do not observe the onset of thermalization on the time-scale achievable by 
our experiment, and associate this relaxation dynamics with the phenomenon of pre-thermalization. We will report 
our new results for the dynamics of a system with tunnel coupling bewteen the two parts of the split condensate. 
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Using the concept of global variables to describe the thermodynamic properties of a trapped Bose-Einstein 
7Li held in an optical 

trap in an almost 1D regime, was employed to explore the contributions of the condensate and the thermal clouds 
to the overall pressure of the system. Different scattering lengths were considered and we could demonstrate the 
dominance of the condensate contribution for T<<Tc. In a second experiment, we have used a BEC of 87Rb trapped 
in a hybrid trap, composed by the combination of a magnetic and an optical trap. In this type of trap it is possible 
to vary the geometry of the system, going from an almost spherical BEC to a very elongated cigar-shaped one, 
providing the possibility to study different regimes. One of the studies in progress is the investigation of the ther-
modynamic transformations of the condensate as well as the determination of the order of the BEC transition for 
an inhomogeneous trapped gas.
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Atom chips give promising access to tailored axial potentials for one-dimensional (1D) gases by employing 
-

behaves rather differently in a box when compared to a harmonic trap [2]. Furthermore, homogeneity of the atomic 
density along the 1D axis allows a closer comparison to exact theoretical treatments, without the need for the local-
density approximation. We characterise the loading of 1D Bose gases near quantum degeneracy in the box trap and 

regime by reducing the density are investigated. 
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We studied a single charged quantized vortex dipole in a dipolar Bose Einstein Condensate (BEC) in the 
Thomas Fermi (TF) limit. We calculated the critical velocity for the formation of a pair of vortices with opposite 
charge in an oblate dipolar BEC. We made a comparision between the critical velocities of dipolar and nondipolar 
condensates. The dependence of the critical velocity on the dipolar interaction strength and vortex seperation was 

properties of BEC. 
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systems with spin [1,2]. Atoms with arbitrary Zeeman structure can be trapped by far-detuned optical traps. In our 
group, we construct an all-optical setup in order to study spin 1 condensates in sodium gases. We achieved to reach 
Bose-Einstein condensation regime by MOT pre-cooling and two-stages evaporative cooling, with about 5000 at-

works for us. 

References 
[1] T.-L. Ho, Phys. Rev. Lett. 81, 742 (1998). 
[2] T. Ohmi and T. Machida, J. Phys. Soc. Jpn 67, 1822 (1998). 



90 Mo-067 Bose gases

A. Groot*, P. C. Bons, and P. van der Straten

Nanophotonics, Debye Institute, Utrecht University, The Netherlands  
*A. Groot@uu.nl 

and temperature modulations in the non-condensed and condensate fractions of an ultra-cold bosonic gas. There is a 

never seen been experimentally. To investigate the dispersion relation of these modes, two approaches are followed. 
First, a perturbation is made in the potential creating a travelling sound wave1. In a second experiment, a stand-
ing sound wave is induced by periodically modulating the trapping potential. Using phase-contrast imaging2 and 
singular value decomposition, the speed of sound and the dispersion relation are extracted from these experiments. 
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We report on our preliminary results of a toroidal trap for BEC of 87Rb using time averaged optical potentials 
[1]. Our apparatus consists of a crossed dipole trap formed by two focused beams of 1064 nm light overlapping in 
the horizontal plane. Atoms are initially loaded to a single beam dipole trap from a standard 3D-MOT. Evapora-

second orthogonal beam [2]. We achieve nearly pure condensates of 104 atoms in the F = 1 ground state. Spin state 
selection is achieved via application of magnetic gradients during the evaporation. The toroidal trap is formed from 

light sheet. 
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Motivated by a recent experiment (Catani J. et al., Phys. Rev. A, 85 (2012) 023623) we study breathing oscil-
lations in the width of a harmonically trapped impurity interacting with a separately trapped Bose gas. We provide 
an intuitive physical picture of such dynamics at zero temperature, using a time-dependent variational approach. 
The amplitudes of breathing oscillations are suppressed by self-trapping, due to interactions with the Bose gas. 
Further, exciting phonons in the Bose gas leads to damped oscillations and non-Markovian dynamics of the width 
of the impurity, the degree of which can be engineered through controllable parameters. Our results, supported by 
simulations, reproduce the main features of the dynamics observed by Catani et al. despite the temperature of that 
experiment. Moreover, we predict novel effects at lower temperatures due to self-trapping and the inhomogeneity 
of the trapped Bose gas.
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Arbitrary engineering of a Bose-Einstein condensate’s (BEC’s) quantum state at the healing-length scale has 
many applications across ultracold atomic science, including atom interferometry [1], quantum simulation and em-
ulation [2,3] and topological quantum computing [4]. However, to date the BEC wavefunction is most commonly 
manipulated with laser light, which is diffraction limited. Here we present a scheme, based upon radiofrequency 

the BEC order parameter at the healing-length scale. 
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The spin Hall effect is a phenomenom that couples spin current to particle current via spin-orbit coupling. 
The effect may be used to develop useful devices for spintronics, which may have advantages over corresponding 
conventional electronic devices. In addition, the spin-Hall effect is intimately related to certain types of topologi-
cal insulators. Spin-orbit coupling in an ultracold bosonic sample of 87Rb has been demonstrated [1]. We now use 

ultracold atom system. 
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The dark solitons have been observed in BEC experiments. They are stable in 1D, but collapse in higher di-
mensions [1]. The existence of the zero and adjoint modes is known in the Bogoliubov-de Gennes (BdG) analysis, 

Goldstone mode, and the adjoint mode ensures thecompleteness of the set of eigenfunctions. In the case of the 
single-component system for which a translational symmetry is broken explicitly, there is only one zero mode. 
The roles of this zero and its adjoint modes are to translate the phase of condensate and to conserve the number of 
condensate, respectively evortex. We consider the case where the soliton exists in BEC and therefore a translational 
symmetry is spontaneously broken. Then the BdG equation has two pairs of the zero and adjoint modes, associated 
with the phase and translational symmetries. We discuss their roles in the dynamics of dark soliton. 
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The coherent nature of Bose-Einstein condensates has led to new and rapid developments in atom optics and 
studies on coherent interaction between light and matter waves. Superradiant Rayleigh scattering in a Bose gas 
released from an optical lattice is analyzed with incident light pumping at the Bragg angle for resonant light dif-

clearly leads to suppression of the latter at even relatively low lattice depths. A quantum light-matter interaction 

waves, we show a method to measure the global coherence function in a Bose gas loaded in a 1D optical lattice with 
a resolution of one lattice spacing [2].
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We present experimental studies of the nucleation of small numbers of vortices in a Bose-Einstein Condensate. 
The vortices are nucleated in a rotating frame during evaporative cooling of the system, and using extraction imag-

created with a set number of vortices determined by the rotation frequency when passing through the BEC transi-
tion. After the condensate begins to form, we observe that additional vortices cannot be added to the system unless 
the rotation drives a collective mode of the condensate. We also observe that when multiple vortices are formed, 
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We measure the non-equilibrium quantum dynamics of a spin-1 Bose condensate, which exhibits Josephson 
-

dulum. The condensate is initialized to a minimum uncertainty spin state corresponding to a unstable (hyperbolic) 

early times, we measure squeezing in spin-nematic variables up to –8 dB [1]. At intermediate times, we measure 
spin oscillations characterized by non-Gaussian probability distributions that are in good agreement with exact 

larger spin oscillation amplitudes compared to no loss case as orbits depart from the separatrix [2]. This experiment 
demonstrates how decoherence of a many-body system can result in more apparent coherent behavior. 
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We study the growth dynamics of ordered structures of strongly interacting polar molecules in optical lattices. 
-

ing ground states with crystalline order, and describe a way to prepare these states by non-adiabatically driving the 
transitions between molecular rotational levels. The proposed technique bypasses the need to cross a phase transi-
tion and allows for the creation of ordered domains of considerably larger size compared to approaches relying on 
adiabatic preparation. 

We discuss the possibilities to use the dipole blockade of microwave excitations to create dissipation-induced 
bound states of polar molecules, and to cool an ultracold gas directly into a strongly-interacting many-body phase. 
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We study thermodynamic properties of a gas of spin 3 52Cr atoms across Bose Einstein condensation. Magneti-
zation is free, due to dipole-dipole interactions. We show that the critical temperature for condensation is lowered 

non-ferromagnetic phase is favoured due to spin dependent contact interactions [2]. We measure the magnetization 
of the gas versus the temperature; our results are compatible with predictions made respectively for a non-interact-

case we obtain a hint for a double phase transition as predicted in [3]. In addition we demonstrate above Bc a spin 
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-
tional atomic species belonging to the lanthanide series possesses a large magnetic moment of seven Bohr magne-
ton, making this species an ideal system for studying novel quantum phenomena arising from strong dipole-dipole 
interaction. Atoms captured in a magneto-optical trap operating on the intercombination line are directly loaded 

achieve a pure condensate containing 7 × 104 atoms. In addition, a Feshbach resonance found at a very low mag-

close to zero, we observe a d-wave collapse of the Bose-Einstein condensate, which provides a striking signature of 
strongly dipolar quantum gases, as previously shown in the Stuttgart experiment for chromium.
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In recent years, increasing interest is devoted to the physics of ultracold gases with dipole-dipole interactions. 
We study the quantum phases and the hysteresis behavior of a dipolar Bose gas loaded into a triangular optical lat-

r3) and the frustrated geometry provides 

-
tem exhibits an anomalous hysteresis behavior, in which the transition can occur only unidirectionally [2], in the 
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and anomalous hysteresis, Phys. Rev. A 85, 021601(R) (2012). 
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Ultracold LiCs molecules in the absolute ground state X1 +

photo-association step [1]. The dipole moment of ground state levels has been determined and was found to be 
in excellent agreement with theoretical predictions [2,3]. We present also the creation of LiCs molecules directly 

cesium atoms are measured and the results are compared with predictions from the universal model of Idziaszek 
and Julienne [5]. We will also show experimental evidence for the occurrence of redistribution processes of internal 
states in a trapped sample of ultracold LiCs molecules driven by black-body radiation and spontaneous decay [6].
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We describe the formation of fermionic NaLi Feshbach molecules from an ultracold mixture of bosonic 23Na 
and fermionic 6 -

-
ber of 5 × 104. The observed molecular decay lifetime is 1.3 ms after removing free Li and Na atoms from the trap. 

Reference 
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With the long-ranged dipole-dipole interaction, in this work, we investigate the formation of periodic soliton 
solutions, named as the soliton lattices, in both quasi-one- and two-dimensional dipolar Bose-Einstein conden-

-
tons can be formed in the lattice structure, which reveals a lower system Hamiltonian energy than that of isolated 
solitons. Moreover, the parameters space to support the therefore formed crystallized structure is characterized for 
the possible experimental realizations. 
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The coupling of the spin of electrons to their motional state lies at the heart of recently discovered topological 
phases of matter. We create and detect spin-orbit coupling in an atomic Fermi gas, a highly controllable form of 
quantum degenerate matter. We reveal the spin-orbit gap via spin-injection spectroscopy, which characterizes the 
energy-momentum dispersion and spin composition of the quantum states. For energies within the spin-orbit gap, 
the system acts as a spin diode. To fully inhibit transport, we open an additional spin gap, thereby creating a spin-
orbit coupled lattice whose spinful band structure we probe. In the presence of s-wave interactions, such systems 
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[1] L. W. Cheuk et al.

 Mo-084 Fermi gases

Kai Morgener*, Wolf Weimer, Jan Henning Drewes, Niels Strohmaier, and Henning Moritz

Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg  
*kmorgene@physnet.uni-hamburg.de 

Ultracold fermionic gases are an ideal model system for the study of quantum many-body phenomena. Of 

Kosterlitz-Thouless-type transitions. 
Here we present our new experimental setup aimed at studying two-dimensional strongly interacting Fermi 

gases. Lithium atoms are cooled all-optically using an in vacuo bow-tie resonator for high transfer and cooling ef-

local readout and control. The present status of the experiment will be shown. 
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-
voirs [1] have recently extended the concept of quantum simulation to mesoscopic physics. We report on a theo-
retical study [2] of such a setup, where the channel and the reservoirs consist of optical lattices. We describe the 

couplings — using the Landauer formalism and non-equilibrium Green’s functions. Our detailed analysis reveals 
-
-

actions between the fermions. As a result of the high control and slow dynamics of the equilibration process these 
new systems provide a versatile testbed for studying quantum transport. 
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kFa = 0) when the 
mass of the two components is different. To this end, we have carried out extensive calculations of the microscopic 
properties of the gas as a function of the mass ratio of heavy M to light m -
sion Monte Carlo method. This method has been used previously to characterize the unitary limit predicting results 
in close agreement with experiment [1]. Now, we extend our study to the case of different masses. Our many-body 
results show that the Fermi gas in this particular limit becomes unstable with respect to the formation of clusters 
when M m
This interesting result is elucidated by analyzing the shape of the nodal surface of the three-body problem. 
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We study the problem of a single impurity of mass M immersed in a Fermi sea of particles of mass m [1]. The 
impurity and the fermions interact through a s-wave narrow Feshbach resonance, so that the Feshbach length R* 
naturally appears in the system. We use simple variational ansatz, limited to at most one pair of particle-hole ex-
citations of the Fermi sea and we determine for the polaronic and dimeronic branches the phase diagram between 
absolute ground state, local minimum, thermodynamically unstable regions (with negative effective mass), and re-
gions of complex energies (with negative imaginary part). We also determine the closed channel population which 
is experimentally accessible. Finally we identify a non-trivial weakly attractive limit where analytical results can be 
obtained, in particular for the crossing point between the polaronic and dimeronic energy branches. 
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The Q-function for bosons allows all possible observables to be obtained from a unique positive probability 
distribution. This means that bosonic coherence and correlations can be readily obtained in a probabilistic way. 
We show that a Q-function is also possible for fermions, which can generate all moments and correlations in one 
distribution. This requires an approach that is more general than the Gilmore-Perelemov fermion coherent state. 
We obtain a Q-function by tracing SU(N) Gaussian operators combined with a Haar measure and a fermion density 

-
mionic states. This complements previous results on a fermionic P-function [1], which has been successfully used 
to calculate the ground-state of the Hubbard model [2]. We investigate approaches to calculating and measuring the 
fermionic Q-function, including computational methods and tomographic experiments. 
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We theoretically investigate the topological aspects of spin-orbit coupled Fermi gases under a Zeeman magnetic 

non-topological domains, suchas the edge and the singular vortex core [1]. Based on the Bogoliubov-de Gennes 

system composed of quantum wire and S-wave superconductor. We also clarify the structure of chiral Majorana 
fermions inside the vortex core in the vicinity of the topological phase transition. The distinction from the results 
obtained in a spin-polarized Fermi gas with a p-wave Feshbach resonance [2] is discussed. 
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-
surements of the local compressibility, density and pressure down to near-zero entropy. We perform the measure-
ments by in-situ imaging of ultracold 6Li at a Feshbach resonance. Our data completely determine the universal 

is observed in the compressibility, the chemical potential, theentropy, and the heat capacity. In particular, the heat 
capacity displays a characteristic lambda-like feature at the critical temperature of Tc TF = 0.167(13). This is the 

NEF

to recent Monte-Carlo calculations. Our measurements provide a benchmark for many-body theories on strongly 
interacting fermions, relevant for problems ranging from high-temperature superconductivity to the equation of 
state of neutron stars. 
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spin and down-spin particles and the spin excitation has a gap, which is attributed to the appearance of fermionic 

to normal states with spin currents. We analyze cases of Fermi-Hubbard and Yang-Gaudin models, and show how 
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Measuring the collective oscillation frequencies of a trapped atomic gas is a useful tool to probe its thermody-
namic properties. Previously, this technique was performed only with the lowest order collective modes, namely 
the surface modes (e.g. sloshing and quadrupole modes), and the breathing modes. Higher longitudinal modes with 
richer nodal structures inside
modes. Here, we present our study on the higher longitudinal collective modes in an elongated cloud of a Fermi gas 
with unitarity-limited interactions. Unlike the lowest order modes which are temperature independent, these modes 
can be used to probe the Equation of State (EoS) of the gas at higher temperatures. We performed precise measure-
ment of the oscillation frequencies, and observed a good agreement between our measurements and the predictions 
using the EoS measured by the MIT group [1]. 
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A degenerate gas of fermionic atoms at its Feshbach resonance provides a clean and versatile system to study 

crossed dipole trap below a microfabricated chip. The chip provides a tight magnetic trap for the initial stage of 

and microwaves to manipulate the atoms. We will discuss several improvements to our apparatus, and report on our 
progress towards strongly interacting gases. 
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Steady-state momentum and coordinate distributions of two-level atoms under a standing light wave are ex-

the maxima of the optical lattice potential. The qualitative interpretation of the results is given. The result provides 
throwing light on some features of atomic kinetics under strong light waves and may be found useful in atomic 
optics and nanolithography.

Reference 
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A proof-of-principle experiment simulating effects predicted by relativistic wave equations with ultracold at-
oms in a bichromatic optical lattice that allows for a tailoring of the dispersion relation is reported [1]. In this lattice, 

can show that the dynamicscan be described by an effective one-dimensional Dirac equation [2]. 
We experimentally observe the analog of Klein-Tunneling, the penetration of relativistic particles through a 

potential barrier without the exponential damping that is characteristic for nonrelativistic quantum tunneling [3]. 

transmission is only observed for the relativistic case. 
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Absolute temperature is one of the central concepts in statistical mechanics and is usually described as being 
strictly non-negative. However, in systems with an upper energy bound, also negative temperature states can be 
realized. In these states, the occupation probability of each basis state increases with energy. So far, they have been 
demonstrated only for localized degrees of freedom such as the spin of nuclei or atoms [1,2]. By using a Feshbach 
resonance in bosonic 39K, we implemented the attractive Bose-Hubbard model in a three-dimensional optical lat-
tice. Following a recent proposal [3,4], we were able to create a negative temperature state for motional degrees of 
freedom, strikingly resulting in a condensate at the upper band edge of the lowest band. This attractively interacting 

We additionally investigated the characteristic timescale for the emergence of coherence in the ensemble, and found 
an intriguing symmetry between the negative temperature and positive temperature state. 
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in an optical lattice. A suitable periodic shaking of the lattice allows to engineer a Peierls phase for the hopping 
parameters. This schemethus allows one to address the atomic internal degrees of freedom independently. We 

superfuids at arbitrary non-zero quasi-momentum [1].
-

observed for a 
breaking perturbation.

References 
[1] J. Struck et al.
[2] J. Struck et al., Science 333, 996 (2011).

Optical lattices Mo-098

M. Takahashi1,*, H. Katsura1, M. Kohmoto2, and T. Koma1

1. Department of Physics, Gakushuin Universisty, Tokyo 171-8588, Japan  
 

*masahiro.takahashi@gakushuin.ac.jp 

We theoretically study the stationary states for the nonlinear Schrödinger equation on the Fibonacci lattice 
which is expected to be realized by Bose-Einstein condensates loaded into an optical lattice. Such a quasiperiodic 
system is realizable by using recently developed method for creating potentials through a holographic mask [1]. 
When the model does not have a nonlinear term, the wavefunctions and the spectrum are known to show fractal 
structures [2]. Such wavefunctions are called critical. 

In our study, we numerically solve the nonlinear Schrödinger equation on the one-dimensional Fibonacci lat-
tice and propose some mathematical theorems to present a phase diagram of the energy spectrum for varying the 
nonlinearity. The phase diagram consists of three portions, a forbidden region, the spectrum of critical states, and 
the spectrum of stationary solitons. Critical states are considered fragile in perturbations in general. However, we 
show that the energy spectrum of critical states remains intact irrespective of the nonlinearity in the sea of a large 
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Recent experiments [1, 2, 3] have intensively investigated the transport of 1D Bose gases in optical lattices 

of phase slips by means of both analytical instanton techniques and numerically exact time-evolving block decima-

p L ∝ p2K – 2 when p << d, where L, K, and d denote the system 
size, the Luttinger parameter, and the lattice spacing [4]. To make a connection with the experiments, we relate the 
nucleation rate with the damping rate of dipole oscillations in a trapped system, which is a typical experimental 
observable [1, 2], and show that the suppression of the transport in 1D is due to quantum phase slips. We also sug-
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Spontaneous four wave mixing (SFWM) of matter waves is a source of non-classical atomic pair states, similar 
-

through SFWM in free space. Using a scheme similar to [3], we perform here SFWM in a moving 1D optical lattice, 

momenta are precisely tunable. The ability to control the beam population makes this source suitable for a variety 
of quantum atom optics experiments, in the limit of either highor low mode population. We study the beams’ cor-
relation properties, which are crucial for such applications. 
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-
cal lattice by analyzing the Bose-Hubbard model within the time-dependent Gutzwiller approximation. Applying 
a linear response theory, we calculate the density response functions of Bose-Bose mixtures in SF, PSF, and CFSF 

out-of-phase mode for the repulsive interspecies interaction. 
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where both the atom-light coupling and the effective detuning are spatially periodic. We explore the geometric 

show how to understand the gauge-dependent Aharonov-Bohm singularities in the vector potential, and calculate 

ex, and ey along with a single beam along 
ez

Thus armed with realistic laser setup, we directly compute the Chern number of the lowest Bloch band to identify 
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A key challenge in current experiments with ultracold atoms is to produce low entropy many-body states in 
optical lattices. In this context, it is very important to characterize and control heating processes, which arise from 

are intrinsically interesting, as there often a separation of timescales between some excitations that thermalize rap-
idly, and some that do not properly thermalize in the duration of an experimental run, so that the non-equilibrium 

lattice scheme could provide control over such noise for atoms in the lowest Bloch band of a lattice. We then present 
results on the thermalization of bosons in an optical lattice in the presence of spontaneous emissions. 
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We report measurements of reservoir-assisted decay of atoms in excited bands in a cubic, spin-dependent opti-
cal lattice. We adiabatically load a 87Rb BEC in a mixture of mF = 0 and mF = – 1 states into a 3D lattice. Atoms in 
the mF = – 1 state experience a strong lattice potential. On the contrary, atoms in the mF = 0 state form a harmoni-

induced by collisions with the reservoir.
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Multi-particle cluster state was successfully created for rubidium atoms, by using an electronic spin dependent 
potential[1]. Creation of the cluster state for nuclear spin is desirable because of its long coherence time. Here we 
present a method to create a cluster state for nuclear spins of 171Yb atoms by using ultra-narrow optical transition 
(1S0

3P2,  = 507nm). While this transition has an extremely narrow line-width of 10mHz, our calculation says a 
potential depth of 10 K can be created using laser power of 100mW, where the detuning and the beam waist are set 
to 150kHz and 30 m, respectively. Since the 3P2

is dependent on the nuclear spin state. We experimentally generated 507nm of the second harmonic light using a 

Obtained power of the second harmonic light was 150mW which is enough to implement our plan. 
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We investigate laser spectra of bosonic 174Yb atoms in a three dimensional optical lattice both theoretically and 
experimentally. With the aid of a ultra-narrow optical transition of the Yb atoms [1], high-resolution spectra are sys-

-
termine parameters of the bosonic Hubbard model with the ab initio manner; then, analyze this model based on the 

the spectra change depending on both temperatures and lattice depths. By comparing the numerical results with the 
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Many intriguing phenomena such as Mott insulator and antiferromagnetism have been observed in the cold 
fermion gas systems in the optical lattice. They are well described by the Hubbard model, whose numerical analy-
ses are performed in various ways, e.g. Gutzwiller anzatz, density matrix renormalization, and quantum Monte 
Carlo methods and so on. Recent advance in experimental technique made it feasible to perform more complicated 
experiment. Fermion dynamics is slower than boson one due to the Pauli blocking, so the observation of Mott in-

and perform numerical simulation with Gutzwiller anzatz. We calculate various observable quantities and compare 
them to experiments [1, 2]. In addition, we discuss the time scale of the diffusion and propose a possible method in 
which the observation of Mott insulator transition in experiments is easier.
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We present a zero-temperature quantum Monte Carlo calculation of a system of hard-rods trapped in a purely 
1D optical lattice by means of a diffusion Monte Carlo calculation. This method provides a continuous treatment of 
the positions contrarily to the widely extended Bose-Hubbard (BH) models allowing for a direct comparison both 
with BH models and experimental results [1]. We shall analyze the phase-structure of the model and characterize 

based on an extension of the winding number technique to zero temperature [2], although its meaning in a purely 
1D system is yet unclear. The off-diagonal one body density matrix shall be used to argue the nature of this non-
isolating phase. 
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Spatial control of on-site interaction within ultracold atomic optical lattices is realized in recent experiment [1]. 
We focus on simple systems with spatially alternating on-site intaractions. We present a phase diagram of 1D fer-
mionic optical lattices with spatially alternating on-site interaction by using density matrix renormalization group 
(DMRG) method. Our model is described by simple Hubbard model with spatially alternating on-site interaction 
U1 and U2

binding-energy. Phase diagram shows gradually changing as a function of spatially alternating interaction i.e., we 

calculate dynamical properties by using dynamical DMRG method [2]. We present multiple band structure due 
to the U1 U2

structure.
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We will present our experimental observation of entanglement of two effectively meter distant atomic qubits 

ions that are Doppler cooled in the Lamb-Dicke regime. Ensuring that the two possible emission paths are indistin-
guishable at a single photon counter, we show that a single detection event projects the two-ion state into a maxi-
mally entangled Bell state [2]. We also demonstrate that we can control the phase of the entangled states by tuning 
the path length difference between the two photonic channels.

A two orders of magnitude increase in the entanglement generation rate was measured compared to remote 

quantum information over long distances using trapped ion architectures.
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Two single Ca+ ions interact over 1 m distance through emission and absorption of single resonant photons. 
Single-photon emission in the sender ion is continuous or triggered; absorption in the receiver is signaled by a quan-
tum jump. For continuous emission of photons at 393 nm, the sender ion is driven by lasers such that the short-lived 
P  level is populated. Decay to the S

 state. We 
observe such quantum jumps at up to 1 s-1 rate. For pulsed photon generation, the sender ion is optically pumped to 
the D  state. Then a laser pulse at 854 nm excites it to the short-lived P  level, releasing a single photon at 393 nm. 
Frequency, polarization, and temporal shape of the 393 nm photon are controlled by the exciting pulses. Correlation 
analysis of the pulsed photon generation and the quantum jumps is currently underway.
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We are developing setups for quantum information processing, simulation, and state engineering with trapped 
atomic ions. We will trap beryllium and calcium ions simultaneously in segmented linear Paul traps. One system 
is optimised for quantum control and separation of ion strings. The second setup is a micro-scale surface-electrode 
trap operating at 4K. In-vacuum high-speed switches allow ultra-fast ion shuttling. For Be+ we have developed a 
7.2W source at 626nm, using sum-frequency generation; this is further frequency doubled with BBO crystals in 
resonant cavities. The lasers required for Ca+ -
nesses up to 290 000. Fluorescence is detected from both ion species with high NA imaging systems, designed with 
in-vacuum objective lenses. A custom high-speed FPGA control system is under-development that will be used to 
generate phase-coherent pulses. 
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It is well known that ultranarrow electromagnetically induced transparency (EIT) resonances can be observed 
3S1

3P1 transition [1]. We report the experi-
mental observation of another type of ultranarrow resonance, even slightly narrower than the EIT one, in the same 
system. It is shown to be due to coherent population oscillations in two coupled open two-level systems [2]. We also 
explore the physics of the 23S1

3P0 -

coupling power. In the second case, we observe destructive interference between the two dark resonances inducinga 
narrow absorption resonance at the line center [3]. 
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with total angular momentum j
are affected homogeneously. The inhomogeneous evolution of the atoms causes decoherence, but this decoherence 

atoms. The resulting lifetime of the RFF qubit can be many days, making RFF qubits of this kind promising candi-
6Li atoms trapped in a 

CO2
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Mesoscopic ensembles of strongly interacting ultracold atoms trapped in optical lattices or in optical dipole trap 
arrays are promising candidates to implement a large-scale quantum register. Quantum information can be encoded 
in the collective states of atomic ensembles and processed by quantum logic gates exploiting Rydberg blockade 
of the laser excitation. If dipole traps or optical lattices are loaded from a cold atom cloud, the number of atoms in 
each site is random. Therefore, the frequency of Rabi oscillations between collective states of the atomic ensembles 

operations. We propose to use adiabatic passage to overcome the dependence of the Rabi frequency on the number 
of interacting atoms [1]. We show that both deterministic excitation of a single Rydberg atom and controlled-phase 
quantum gates can be implemented using chirped excitation or STIRAP in mesoscopic ensembles with unknown 

with randomly loaded ensembles.
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Quantum networks are at the heart of quantum communication and distributed quantum computing. Single 
atoms trapped in optical resonators are ideally suited as universal quantum network nodes capable of sending, 
receiving, storing, and releasing photonic quantum information. The reversible exchange of quantum information 
between such single-atom cavity nodes is achieved by the coherent exchange of single photons. Here we present the 

-
mote, independent laboratories [1]. We demonstrate the faithful transfer of arbitrary quantum states and the creation 

states and manipulate the nonlocal state via unitary operations applied locally at one of the nodes. This cavity-based 
approach to quantum networking offers a clear perspective for scalability.
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We propose a cavity-based scheme for parallel spatially multimode quantum memory for light. A memory cell 
analogous to the previously proposed quantum volume hologram of [1] is placed into spatially multimode single-
port ring cavity. The cell is illuminated with off-resonant counter-propagating quantum signal wave and strong 

of freedom, and evaluate memory capacity in terms of the transverse modes number. We also describe a method 
of “on-demand”, or addressable retrieval from the memory of quantized spatial modes, which is important [2] for 
application of memory in quantum repeaters. 
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in the ground state manifold of 43Ca+ using an in-house designed and microfabricated surface ion trap. The trap 
incorporates integrated microwave waveguide resonators to drive the qubit transitions at 3.2 GHz. We intend to 

as recently demonstrated [1]. Preliminary results indicate that the trap has a heating rate amongst the lowest mea-
sured in a surface trap at room temperature, and that the qubit has a coherence time of order 10 s. 

Secondly, we are aiming to implement a two-qubit gate using two different isotopes of calcium (40Ca+ and 
43Ca+) in a macroscopic linear Paul trap. The isotope shift (~ 1 GHz) allows us to individually address the two ions. 
Transitions are driven by two Raman lasers which manipulate both isotopes with low scattering error and high Rabi 
frequency [2]. We have achieved Raman sideband cooling close to the ground state ( n < .0 1 ) and simultaneous 
readout on both isotopes. 
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We investigate the resource power of general quantum correlations [1] (as measured by the geometric discord 
[2]) versus entanglement in a class of cat-like states  of a two-level atom and a harmonic oscillator. The entangle-
ment in these states can reach the maximum while the geometric discord is limited by the temperature T of the 
oscillator. We design two hybrid communication protocols that take advantage of either resource. One is a teleporta-
tion scheme where Bob teleports an unknown atomic state to Alice, via the shared resource 
unity for any T. The second is a remote state preparation protocol where Alice can measure the atom to remotely 

decreasing with increasing T. We conclude that quantumness of correlations and entanglement are truly different 
resources, and different communication scenarios can exploit one ignoring the other, and vice versa. 
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We study the time evolution of Bell-CHSH functions for a spin-oscillator cat-like state evolving according to 

frequency of the Brownian bath is much smaller than the natural oscillation frequency of the oscillator, i.e. in the 
regime that would correspond to a strong non-Markovian limit. In this case, large-amplitude revival peaks are 
found, showing the kick-back mechanism that the memory-keeping environment can exert over the system. In the 

nonmonotonic decay of the Bell-CHSH function. Yet, such dynamics is nondivisible and as such it deviates from 
the prescriptions commonly accepted for Markovianity. 
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(ASE) from the ensemble when all ions are in the excited state, and the RASE rephasing process, once an emis-
sion has been detected and the population of the ensemble has been inverted. The optimal optical depth of the ion 
ensemble is found to maximise the production of single-photon states while minimising multi-photon production, 
and also to maximise the probability of a rephased photon being emitted. This will be used to chose an operating 

is also calculated. 
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It is demonstrated that genuine random numbers can be generated from a system consisting of two entangled 
atoms (ions) [1]. This nonlocal system can be characterized as a bipartite binary input and binary output box [2]. 
Due to the irreducible randomness intrinsic to a quantum system, the relationship between inputs and outputs is 
characterized by a conditional joint probability distribution P(ab | xy), which is determined by the quantum state 
and measurement setups. Notably, toavoid superluminal (fast-than-light) communication, a nonlocal box does not 
allow signaling. Our work shows that one can use correlation functions to produce all the probability distribution 
of a nonsignaling box. As a result, the number of independent parameters (the dimension) of a nonsignaling box is 
the number of its correlation functions. 
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Spontaneous emission and the inelastic scattering of photons are two natural processes usually associated with 
decoherence and the reduction in the capacity to process quantum information. Here [1] we show that, when suit-

-
tion in the emitting qubits while protecting them from deleterious dissipative effects. We exemplify this by showing 
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The strong measurement of a quantum state is a non-reversible process that projects the system onto the ei-
genstates. Therefore, it is generally not possible to reconstruct the state prior to the measurement. However, the 

techniques. We report on the experimental realization of such quantum measurement reversal in a system of trapped 
Calcium ions. We adapt the 3-qubit quantum error correction code presented in [1] which corrects for single qubit 

-
bits. Here, the quantum information is encoded in an entangled logical qubit α β+ + + + − − −  of three physical 
qubits. The measurement projection of a single physical qubit onto 0  and 1  does not reveal any information 
on the state of the logical qubit, i. e. the quantum information is protected by entanglement. The error correction 
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We experimentally demonstrated a double slow light scheme (DSL) based on double electromagnetically in-
duced transparency (EIT) in optically dense, cold cesium atoms [1]. The cross-Kerr nonlinearity between the two 

EIT systems [2]. The group velocities of the two pulses are tuned to a matched condition to prolong the interaction 

shift of 10-6

system without DSL scheme [4] due to a linear loss in the switching EIT system in which a small two-photon de-
tuning is introduced to obtain nonzero cross-Kerr nonlinearity. We have successfully demonstrated an improved 
DSL scheme in which a nonzero cross-Kerr exists even with both EIT systems on their two-photon resonance. We 
studied the nonlinear process of all optical switching and have overcome the N-type limit by a factor of 2.6. The 
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Nitrogen-Vacancy (NV) centers in diamond have emerged as a promising solid-state platform for quantum 
communication, quantum information processing [1], and metrology. Engineering the light-matter interaction be-
tween NV centers and nanophotonic devices can greatly enhance the performance of these systems. We demon-
strate fabrication of diamond-based optical cavities containing and coupled to individual NV centers, with the 
potential for dramatic enhancement of the NV center’s zero-phonon line via the Purcell effect. Localized modes 
having quality factors up to 6,000 have been achieved, resulting in a Purcell factor of 10. In addition, we investigate 
the properties of NV centers inside nanoscale structures and present novel techniques to ensure desirable spectral 

intriguing applications such as single photon transistors and quantum networks.
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Seeking for elegant ways of performing computations on the most compact scale is one of the crucial objectives 

quantum photonic circuits must meet the bottleneck of the diffraction limit, e.g., few hundred nm for the optical 
region. The pioneering experiment [1] of incoherent photon storage were carried out with the wavelength of 0.86 Å 
and might overcome this size issue. Using this scheme, another novel idea [2] has also shown the potential of creat-
ing single-photon entanglement in the x-ray regime. Here we will demonstrate a new way of manipulating a single 
hard x-ray photon, including the coherent storage and the phase modulation of its wave packet [3]. We expect that 
such x-ray quantum optics schemes will help advancing quantum computation on very compact scales. 
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The quest for Anderson localization of waves is at the center of many experimental and theoretical activities. 
Cold atoms have emerged as interesting quantum system to study coherent transport properties of light. Initial 
experiments have established that dilute samples with large optical thickness allow studying weak localization of 
light. The goal of our research is to study coherent transport of photons in dilute and dense atomic samples. One 
important aspect is the quest of Anderson localization of light with cold atoms and its relation to Dicke super- or 
subradiance. 

We present experimental and theoretical results [1-3], emphasizing the role of long range interactions between 
the atomic dipoles resulting in dominant global Dicke like synchronization over Anderson localization in coherent 
wave transport in resonant media.
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Interfacing light and matter at the quantum level is at the heart of modern atomic and optical physics and is a 
unifying theme of many diverse areas of research. A prototypical realization is electromagnetically induced trans-
parency (EIT), whereby quantuminterference gives rise to long-lived hybrid states of atoms and photons called 
dark-state polaritons [1]. in a fully coherent and reversible way. Here we report the observation of strong interac-
tions between dark-state polaritons in an ultracold atomic gas involving highly excited (Rydberg) states. By com-
bining optical imaging with counting of individual Rydberg excitations we probe both aspects ofthis atom-light 
system. Extreme Rydberg-Rydberg interactions give rise to a polariton blockade, which is revealed by a strongly 
nonlinear optical response of the atomic gas. For our system the polaritons are almost entirely matter-like allowing 
us to directly measure the statistical distribution of polaritons in the gas. For increasing densities we observe a clear 
transition from Poissonian to sub-Poissonian statistics, indicating the emergence of spatial and temporal correla-
tions between polaritons. These experiments, which can be thought of as Rydberg dressing of photons, show that it 
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Q optical cavity. The 
-

geneous BEC into a periodically patterned distribution above a critical driving strength [1]. This self-organization 

the role of the internal atomic states are played by the motional states of the condensate [2]. The cavity photon loss 
limits the observation of the quantum phase transition in the ground state and for long times one observes a non-

entanglement is peaked but not divergent in the steady state [3]. 
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We investigate the deterministic generation of quantum states with negative Wigner functions which arise due 
to giant non-linearities originating from collisional interactions between Rydberg polaritons. The state resulting 

using homodyne detection followed by quantum tomography. We obtain simple analytic expressions for the evo-

non-classical states of the light, this method can also provide a very sensitive probe of the physics of the collisions 
involving Rydberg states. 
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-
cold Rydberg gases provide an ideal system for nonlinear optics. Here, we investigate interaction effects on the 
nonlinear process such as four-wave mixing (FWM) and Electromagnetically induced transparency (EIT). The 
combination of interacting Rydberg gases and this kind of quantum coherent process has recently attracted con-
siderable theoretical and experimental interest, as it holds promise for realizing extremely large nonlinearities by 
exploiting the exaggerated interactions between Rydberg atoms. We present a classical many-body approach to in-
vestigate mechanisms behind optical nonlinearities arising from strong Rydberg-Rydberg interactions. Our method 
can describe large numbers of excited atoms, and, at the same time, properly account for strong correlations and 
many-body entanglement as well as dissipative processes. 



Quantum optics… Mo-133 123

Milrian S. Mendes and Daniel Felinto

 
milrian@gmail.com, dfelinto@df.ufpe.br 

accessible measures of entanglement for the system, taking into account crucial imperfections of the stored entan-

of the chain, and characterize it by a lower bound on its concurrence and the ability to violate the CHSH inequal-
ity. The minimum purity of the initial state, required to succeed in the protocol as the size of the chain increases, 
is obtained. We also provide a more accurate estimate for the average time required to succeed in each step of the 
protocol. The minimum purity analysis and the new time estimates are then combined to trace the perspectives for 
implementation of the DLCZ protocol in present-day laboratory setups.
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Conditional measurements on the undriven mode of a two-mode cavity QED system prepare a coherent super-
position of ground states that generate quantum beats [1]. The continuous drive of the system, through the phase 
interruptions from Rayleigh scattering, induces decoherence that manifests itself in a decrease of the amplitude 
and an increase of the frequency of the oscillations [2]. Our recent experiments implement a feedback mechanism 
to protect the quantum beat oscillation. We continuously drive the system until we detect a photon that heralds the 
presence of a coherent superposition. We then turn the drive off to let the superposition evolve in the dark, protect-
ing it against decoherence. We later turn the drive back on to measure the amplitude and frequency of the beats. 

-
ported by NSF, CONACYT, and the Marsden Fund of RSNZ. 

References 
[1] D. G. Norris, L. A. Orozco, P. Barberis-Blostein, and H. J. Carmichael, Phys. Rev. Lett. 105, 123602 (2010). 
[2] D. G. Norris, A. D. Cimmarusti, L. A. Orozco, P. Barberis-Blostein, and H. J. Carmichael, Phys. Rev. A 85, 021804 (2012) 



124 Mo-135 Quantum optics…

James K. Thompson*, Justin G. Bohnet, Zilong Chen, Joshua M. Weiner, Dominic Meiser, and Murray J. Holland

 
*jkt@jila.colorado.edu 

We will describe a recently demonstrated cold-atom Raman laser that operates deep into the superradiant or 
bad-cavity regime [1]. The system operates with <1 intracavity photon and with an effective excited state decay 
linewidth <1 Hz. This model system demonstrates key physics for future active optical clocks (similar to masers) 
that may achieve frequency linewidths approaching 1 mHz due to 3 to 5 orders of magnitude reduced sensitivity to 
thermal mirror noise. The measured linewidth of our model system demonstrates that the superradiant laser’s fre-
quency linewidth may be below the single particle dephasing and natural linewidths, greatly relaxing experimental 

the collective atomic phase with a precision that in-principle can be near the standard quantum limit. The possibili-
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We propose various schemes for the dissipative preparation of a maximally entangled steady state of two atoms 
in an optical cavity. Harnessing the natural decay processes of spontaneous emission and cavity photon loss, we ap-
ply an effective operator formalism [1] to identify and engineer effective decay processes, which reach an entangled 

the same result by using engineered spontaneous emission. We investigate various aspects which are crucial for the 
experimental implementation of our schemes in existing cavity QED and ion trap setups. Our study shows promis-
ing performance for present-day and future experimental systems, in particular a qualitative improvement in the 
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The most important effect in this class is the Electromagnetically Induced Transparency (EIT) [1]. Recently a number of 
-
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Since the original Bell’s idea a lot of different Bell tests have been performed, mostly using the means of quantum 
-

ing tasks, namely in the device independent scenarios. Necessary requirement to assess the validity of a Bell test is to 
close both the detection and locality loopholes, the goal with still missing experimental evidence. It was shown in [1, 2, 

by means of cavity QED with a single atom. We show, that this state can be achieved using realistic experimental param-
eters available up-to-date yielding the CHSH violation of up to 2.25 and propagation distances of order of 100 meters for 
optical systems. 
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Salecker-Wigner-Peres (SWP) quantum clock [1]. After a brief discussion the applicability of such clock to general 
potentials [2] and the role of the localizability of the tunneling particle [3], we argue for the need to perform a post-

an expressionfor an average tunneling time valid for general localized potentials. The properties of this time scale 
are investigated both in the non-relativistic and relativistic scenarios – numerical results are presented for several 
potentials and, in particular,it is shown that this time scale does not exhibit the Hartman effect (nor its generalized 
version). Finally, the interpretation of the SWP clock and of the results obtained are discussed in the context of the 
weak measurement theory. 
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Quantum Zeno dynamics (QZD) generalizes the quantum Zeno effect in which repeated measurements inhibit 
the coherent evolution of a system [1]. In QZD, the measured observable has degenerate eigenspaces in which the 

evolving under the action of a resonant classical source. Repeated interrogation of an atom coupled to the cavity 
-

ics generates interesting non-classical states and can be turned into phase space tweezers to prepare nearly arbitrary 
quantum superposition of coherent states. We present the principle of the method and the progresses toward its 
experimental implementation with slow circular Rydberg atoms in a high Q superconducting microwave cavity.
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precision measurement, quantum information and ultralow noise communication owing to its intense cw outout 
with nonclassical photon statistics. The sub-Poissonian photon statistics in the microlaser originates from the active 
photon-number stabilization due to a decreasing gain function with the photon number. Since the previous observa-
tion of Mandel Q of -0.128, many efforts were made on further improvement in system stability and detection hard-

in the interaction time and the atom-cavity detuning, which led to the more enhanced photon-number stabilization. 

shot-noise reduction than the previous one. 
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Optical frequency comb with non-classical properties can be produced via parametric down-conversion of a 
pumping comb in a degenerate synchronously pumped optical parametric oscillator. In the time domain we devel-
oped a quantum theory of the oscillator that describes its operation both below and above oscillation threshold and 
gives clear insight into the character of quantum properties of an output signal comb being a train of pulses. Now 
we are thinking about application of a frequency comb and its non-classical counterpart for ultra-precise posi-
tion sensing, particularly, in gravitational wave detectors. Here the fundamental limit on an accuracy of position 
determination (standard quantum limit) appears as interplay between time-arrival uncertainty of pulses and light 
back-action on a mechanical sub-system. 
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We are setting up a new experiment with ultracold fermionic atoms in a two-dimensional honeycomb lattice 
to investigate intriguing phenomena which are either related to relativistic quantum physics (e.g. Zitterbewegung, 
Klein tunnelling) or to condensed matter physics (quantum criticality, quantum spin liquid). This system has the 
underlying geometry of graphene, but can be tuned and controlled in a much greater range. In the experiment, a 
degenerate Fermi gas of 6Li will be created after laser cooling in a magneto-optical trap (MOT) and subsequent 
evaporative cooling in the vicinity of a Feshbach resonance in a strong optical dipole trap. The atoms will then be 
transferred optically into a glass cell, where they will be loaded into a two-dimensional honeycomb potential. We 
plan to use a site-resolved imaging technique in order to manipulate the particles and analyze their distribution in 
the lattice. We will show the experimental progress towards a degenerate Fermi gas. 
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We propose a simple model of bosonic mixtures in a double-well trap to investigate the disorder-induced 
collapse of the phase coherence which can cause the localization of major atoms. It is found that the number of 
impurity atoms randomly distributed in two subwells and the inter-species interaction play an important role in the 
correlation of the major atoms. It strikingly shows that the delocalization can even occur when intra-species and 
inter-species interactions are comparable, which exhibits a ‘twonegatives make a positive’ effect. We also calculate 
the dependence of the compressibility on the doping ratio and inter-species interaction, and the signature of Bose 
glass phase is predicted. In conclusion, our studies shows that even the simple two-site BH model can be useful to 
investigate more interesting physics in the disordered system of ultracold atoms. 
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atomic analogs of fractional quantum Hall systems. The atomic species Ytterbium combines the advantages of 
a large number of both bosonic and fermionic isotopes and a long lived metastable state (3P0, lifetime 16 s), and 
its level scheme favours the implementation of a two-dimensional optical lattice, where the ground and excited 
states arrange in spatially separated sublattices. Optical coupling of the two states enables tunneling between the 
sublattices, resulting in a geometric phase of the atomic wavefunction equivalent to the Aharonov-Bohm phase of 

and describe the experimental techniques to implement laser-induced gauge potentials. 

References 
[1] D. Jaksch and P. Zoller, , 

New J. Phys. 5, 56 (2003). 
[2] F. Gerbier and J. Dalibard, , New J. Phys. 12, 033007 (2010). 

Quantum simulators… Mo-146

M. Eric Tai, Ruichao Ma, Philipp Preiss, Jonathan Simon, and Markus Greiner*

Department of Physics, Harvard University, Cambridge, MA 02138, USA  
*greiner@physics.harvard.edu 

to local observables and correlation functions in strongly-interacting many-body systems. Such quantum gas mi-
croscopes have thus far been limited to investigating purely two-dimensional systems. Here, we present a scheme 

transport between two tunnel-coupled planes, our system can be used to unambiguously identify atom numbers n = 
0 to n
shell structure with up to three atoms per site and study the formation of doublon-hole pairs across a magnetic quan-

and creates new possibilities for the simulation of bilayer condensed matter systems with ultracold atoms. 
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strongly correlated many-body systems. However, the relevant length and energy scales are at present limited by an 

systems to create a nanoscale optical lattice for ultracold atoms. Our approach combines the unique coherence 
properties of isolated atoms with the subwavelength manipulation and the strong light-matter interaction associated 
with nano-plasmonic systems. It allows one to considerably increase the energy scales in the realization of Hub-
bard models and to create effective long-range interactions in coherent and dissipative dynamics of atoms. As an 
example we demonstrated how these techniques can be used to prepare and study many-body states of AKLT type 
in the steady state of an optically driven system. 
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We study the tight-binding model with uncorrelated diagonal disorder on a honeycomb lattice. We use three 

s, scattering mean free time 
localization length . The three methods give excellent quantitative agreement of the single-particle properties 

s, , 
and different energies (including the charge neutrality point of a honeycomb lattice) can be described by the same 
single-parameter curve. However, the extracted numerical value of shows great deviation from the prediction of 
self-consist theory of localization. Our numerical results also show possible indication of weak localization cor-
rections. 
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Advances in cold gases physics are beginning to enable experiments involving the direct manipulation and ob-
servation of single- or few-atom mobile impurities [1] within a many-body quantum system, a topic of longstanding 
interest for condensed matter theory, where it is related to studies of e.g. conductivity and the X-ray edge problem. 
Further progress in this direction is expected from the latest generation of experiments offering single-site address-
ability in optical lattices [2, 3] . 

In light of these developments we study the dynamics of mobile impurities in 1D quantum liquids using a 
DMRG technique. We address the recently proposed subdiffusive regime of impurity motion [4], a class of excita-
tions beyond those described by the standard Tomonaga-Luttinger theory. We study the conditions for observing 
this regime and its’ crossover to the ballistic regime. We furthermore examine the possibilities to observe the inter-
mediate diffusive motion of impurities in these systems. 
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We have studied nD + nD multilevel pairwise interactions between Rydberg atoms in a magneto-optical trap, 

work, our goal is to study the nD + nD interaction in a higher density cold sample in a dipole trap. Therefore, we 
have loaded a QUEST trap for Rb using a CO2

2) around 
70 µm. For 75 W laser power, the QUEST depth is ~ 730µK and the density sample is arround 4x1011 3. 
The nD Rydberg states are excited using a CW blue light (480nm) with 1MHz of linewidth. During the presentation 

2 optical trap.
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We present the results for controlled optical collisions of cold, metastable neon atoms in a magneto-optical trap 
3P2 

to (3s)3D3 cooling transition. The measured ionization spectrum excludes resonances as a result of the formation 

observe a broad unresolvable ionization spectrum that is well described by the established theory of Gallagher and 
Pritchard[3]. Depending on the frequency detuning of the control laser relative to the cooling transition, for a red 
frequency detuned laser beam we have measured up to 4 x enhancement of the ionization rate. In the case when 
the control laser us detuned to the blue of the cooling transition we observe optical shielding and a reduction in the 
ionization rate of up to a factor of 5. We will present the results of this investigation.
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Calculation of the cross-section for the process of double-electron capture by a bare nucleus with emission of 
a single photon is presented. The double-electron capture is evaluated within the framework of quantum electrody-

-
tron correlation, corrections to the interelectron interaction were calculated with high accuracy, partly to all orders 
of the perturbation theory. The calculations of the cross-section are presented not only for the experiments [1, 2, 3] 
as it was also shown in [4] but for new experiments F9+ + C and Cr24+

2 ions. Also we investigate the depen-
dence of the cross-section from the energy of incoming ion are presented. 
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trapped ion. Using the transformation of Cook et. al. -
odically oscillating operators. In order to study their effect, we calculate (i) the coupling strengths of the micromo-
tion operators by numerical integration and (ii) the quasienergies of the system by applying the Floquet formalism 
— a useful framework for studying periodic systems. It turns out that the micromotion is not negligible when the 
distance between the atom and the ion traps is shorter than a characteristic distance. Within this range the energy 
diagram of the system changes remarkably when the micromotion is taken into account, which leads to undesirable 
consequences for applications that are based on an adiabatic collision process of the trapped atom-ion system. We 
suggest a simple scheme for bypassing the micromotion effect in order to successfully implement a quantum con-
trolled phase gate proposed previously, and create an atom-ion macromolecule. The methods presented here are not 
restricted to trapped atom-ion systems and can be readily applied to studying the micromotion effect in any system 
involving a single trapped ion. 
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cooperative enhancement of the atom-light interaction. Such cooperative effects manifest as a of the decay rate 
(super- or subradiance) and a shift of the resonance known as the cooperative Lamb shift. By tuning the atomic 
density and layer thickness of a nanometre-scale atomic vapour cell, we are able to move continuously from neg-
ligible to dominant dipole–dipole interactions, and experimentally measure these cooperative effects including the 
cooperative Lamb shift, in agreement with theoretical predictions of nearly 40 years ago [1,2]. Finally we report 
on recent results on the propagation of light in the cooperative limit where the effects of superradiance and slow or 
fast light are combined. 
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sities of ~ 1018 cm–3 at temperatures 0.26 - 0.6 K [1]. We have observed a variety of spin wave modes caused by the 

is accompanied by spontaneous coherence of the transversal magnetization, similar to that of the homogeneously 
precessing domain in liquid 3He, where this can be interpreted as Bose-Einstein condensation of magnons [2]. 
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We use collective oscillations and trapped Ramsey interferometry of a two-component Bose-Einstein conden-
sate of 87Rb F = 1, mF F = 2, mF = 1>) for the precision measurement of the 
interspecies scattering length a12 and the intraspecies scattering length a22. We show that in a cigar-shaped trap the 
3D dynamics of a component with a small relative population can be conveniently described by a 1D Schrödinger 

a12

a11 and is largely decoupled from the scattering length a22

numerical simulations of the coupled Gross-Pitaevskii equations to the recorded temporal evolution of the axial 
width we obtain the value a12 = 98.006(16)a0, Using Ramsey interferometry of the two-component condensate we 
measure the scattering length a22 = 95.44(7)a0. 

Reference 
[1] M. Egorov, B. Opanchuk, P. Drummond, B. V. Hall, P. Hannaford and A. I. Sidorov, “Precision measurement of s-wave 
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-
dom porous medium. The medium, made of compacted ground pyrex glass, with approximately 50 m mean grain 

a diffusion distance D ≲ 1 mm. We detected laser light frequency scanned around the Rb D1 transitions that has 
traversed several millimeters of the porous sample. Using fast time-resolved detection, synchronized to a sudden 
change in laser intensity, we were able to identify the contribution to the transmitted light of photons being sponta-
neously emitted by the Rb atoms. For low atomic densities, the randomness of the photon trajectories in the sample 
results in an “integrating sphere” effect in which the re-emission of light almost cancels the atomic absorption. At 
large atomic densities, the contributions of absorption and spontaneous emission to the transmission present notice-
able spectral differences. Also, as the atomic density is increased, the characteristic decay time of the spontane-
ously emitted photons increases and the fraction of absorbed energy being re-emitted decreases. We interpret these 
observations as due to the onset of photon trapping in connection with non-radiative decay in atom-wall collisions. 
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Interfacing cold atom clouds and nanostructures, especially carbon nanotubes has been attracting large interest 
because the objects have similar atom numbers and masses. This enables both mechanical and electronic manipula-
tion of solids by atoms and vice-versa. In our experiment, we bring ultracold atom clouds of rubidium into spatial 
overlap with a free standing carbon nanotube thus atoms are scattered on the tube. We observe the time dependent 
atom loss from thermal clouds and Bose-Einstein condensates, from which we derive the Casimir-Polder interac-
tion potential [1]. We identify the scattering radius and the regimes of quantum mechanical scattering between 
rubidium atoms and the carbon nanotube. We report on the technique of “cold-atom scanning probe microscopy” 
[2] for imaging the topography of nanostructures and for ultrasensitive force measurements. 

References 
[1] P. Schneeweiss et al., , in print. 
[2] M. Gierling et al., Cold-atom scanning probe microscopy, Nature Nanotechnology 6, pp. 446-451 (2011). 
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Importance of correlation – polarization and PCI in 

Prithvi Singh, Vinod Patidar, and G. Purohit*

India 
*ghanshyam.purohit@spsu.ac.in, prithvipurohit@gmail.com

The charged particle impact ionization studies of fundamental atomic and molecular systems have been of great 
interest since the early days of quantum mechanics. Extensive theoretical and experimental investigations have 
been carried out to understand the electron impact single ionization (i. e. (e, 2e) processes) of various targets (see 
[1] and references cited therein). Accurate cross sections for Xe atom target ionization by electron impact are very 
important for the understanding of the complex interactions involved in the plasma processes. We will report triple 
–differential cross section of Xe atoms for low energy (e, 2e) ionization at the incident electron energies ranging 

distorted wave Born approximation formalism. We will discuss the effect of target polarization and post collision 
interaction in coplanar as well as the perpendicular plane geometrical conditions. We will also compare the result 
of our calculation for Xe with the very recent measurements of Nixon et al. [2].

References 
[1] G. Purohit, Prithvi Singh, Vinod Patidar, Y. Azuma, and K. K. Sud, Phys. Rev. A 85, 022714 (2012).
[2] K. L. Nixon and A. J. Murray, Physical Review A 85, 022716 (2012).

 Mo-160 Atomic interactions…

Alina Gearba1,2, Jerry Sell1, Brian Patterson1, Robert Lloyd1, Jonathan Plyler1, and Randy Knize1

1. Laser and Optics Research Center, US Air Force Academy, Colorado Springs, Colorado, USA 
2. Department of Physics and Astronomy, University of Southern Mississippi, Hattiesburg, Mississippi, USA 

*alina.gearba@usm.edu and jerry.sell@usafa.edu

We will present measurements of the mixing rates and cross sections for collisional excitation transfer between 
the 5P and 5P states of rubidium in the presence of inert buffer gases. Selected pulses from a high repetition 

-
tion transfer observed by time-correlated single-photon counting. The measured mixing rates exhibit a linear de-

densities greater than 1 atm. We attribute this quadratic component to three-body interactions which alter the col-

for a range of buffer gas temperatures and pressures[1] along with mixtures such as Rb-He-Ar.

Reference 

transfer induced by 4He collisions”, Opt. Lett. 37, pp. 1637-1639 (2012). 
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The temperature (294° K < T < 340° K) dependence of the longitudinal (T1), transverse (T2) relaxations times 
and atoms absorption rate were experimentally investigated for two cells with alkane- and alkene-based coatings. 
The T1(T) and T2(T) were measured by Franzens “relaxation in the dark” and double radio-optical resonance method 
accordingly. Both cells showed a growth of T1 to a certain temperature (T = 332° K for alkane- and T = 298° K for 
alkene-based coatings), after which the T1 decreased rapidly. T2 has a monotone decrease for alkane- and does not 
change for alkene-based coatings in a whole measured temperature range. The concentration of Cs atoms in bulb 
was monitored by measuring of transmitted through the cell light intensity after quick closing of the valve between 
bulb and Cs reservoir for studying of atoms absorption rates [1]. Different character temperature dependence of 
slow and fast components of characteristic time for alkane- and alkene-based coating were found. 

Reference 
[1] M. V. Balabas, O. Yu. Tretiak Investigation of temperature dependence of kinetics of irreversible caesium atoms leaving from 

vapour phase to anti-relaxation coating., Technical Physics 9, pp. 75-82 (2012). 
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Ultracold atomic systems of reduced dimensionality show intriguing phenomena like fermionization of bo-

interaction strength by varying the trap geometry. Here, a theoretical model is presented describing inelastic con-

loss experiment of Haller et al. in terms of particle losses [1]. These resonances originate from possible molecule 

resolves the contradiction of the experimental observations to previous theoretical predictions. 

Reference 
[1] E. Haller et al., Phys. Rev. Lett. 104, 153203 (2010). 
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Rydberg atoms have as one of their characteristic the high principal quantum number. Their large dimen-
sions imply in a large dipole moment, which allows one to use them for studies of atomic interactions with elec-

photoionization cross sections of these highly excited atoms, is due to its importance to several areas like Atomic 
and Molecular Physics, Astrophysics, Plasma Physics, among others. Based on the model proposed by Aymar and 
co-workers [1] we studied the photoionization cross sections of alkali atoms, expanding the previous analysis to 
n
experimentally [1], but the same is not true for the excited states. We performed an analysis of the behaviour of 
radial wave functions depending on the photoelectron energies and by analysing them we have alsoperformed a 
study of the Cooper minima. 

Reference 
[1] M. Aymar et. al., J. Phys. B , 17, 993 (1984). 
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Electromagnetically induced transparency (EIT) involving Rydberg states [1] has become the subject of interest 
in cold atom experiments due to a wealth of possible applications ranging from quantum computing to mediated 
photon-photon interactions [2]. We study the behaviour of Rydberg EIT in an ensemble of ultracold 87Rb as it is 
cooled through the transition to Bose-Einstein condensation. We observe the familiar dipole blockade as a function 

discontinuous behaviour is observed as the gas is cooled through the BEC phase transition. By realizing Rydberg 
EIT in condensates we will be capable of studying the strong nonlinear interactions introduced by the effect in 
ultracold, dense atomic gases. 

References 
[1] J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, Cooperative Atom-Light Interaction 

, Phys. Rev. Lett. 105, 193603 (2010). 
[2] Alexey V. Gorshkov, Johannes Otterbach, Michael Fleischhauer, Thomas Pohl, and Mikhail D. Lukin, Photon-Photon 

, Phys. Rev. Lett. 107, 133602 (2011). 
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Chaos-induced enhancement in electron recombination in 

V. A. Dzuba1, V. V. Flambaum1,*, C. Harabati1, and G. F. Gribakin2

 
2. Department of Applied Mathematics and Theoretical Physics, Queen’s University,  

 

We developed a statistical theory for the resonant multi-electron recombination based on properties of chaotic 
eigenstates [1]. Level density of many-body states exponentially increases with the number of excited electrons. 
When the residual electron-electron interaction exceeds the interval between these levels, the eigenstates become 
“chaotic” superposition of a large number of Hartree-Fock determinant basis states. This situation takes place in 
some rare-earth atoms and majority of multiply-charged ions excited by the electron recombination. We derived 
a formula for the resonant multi-electron recombination via di-electron doorway states leading to such compound 
resonances and performed numerical calculations for the electron recombination with tungsten ions Wq+, q = 17 – 
24. A recent experiment [2] showed that the electron recombination of tungsten ion W20+ exceeds the theoretical 
direct recombination by three order of magnitude. Our calculations agree with this experimental result. 

References 
[1] V. V. Flambaum, A. A. Gribakina, G. F. Gribakin, and C. Harabati, 

many-electron states, Phys. Rev. A 60, pp. 012713-7 (2002). 
[2] S. Schippers et al., Dielectronic recombination of xenonlike tungsten ions, Phys. Rev. A 83, pp. 012711-6 (2011). 457 (1999). 
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We study ultracold collisions in a model 1D system formed by a free atom and a trapped ion. This model 
describes motion in a waveguide with spacing between transverse modes much larger than both the ion trap level 
spacing and the collision energy. We consider a zero-range atom-ion interaction, appropriate to model the effect of 

rf-trapping (Paul trap) of the ion. 
The static case is numerically treated using two approaches. The integral equation of scattering is solved by 

a spectral method adapted to treat the kernel singularity. The close coupled form of the Schrödinger equation is 
solved using a log-derivative propagation approach to obtain directly the S-matrix. Coupling between center of 
mass and relative motion results in nontrivial resonance effects. The molecular states associated to the resonances 

Floquet theorem to convert the problem to a time independent formulation. The sparse linear system resulting from 

-
tion on the collision process. Our model could be applied to interpret results of current atom-ion experiments (1,2).

References 
[1] S. Schmid, A. Härter, and J. H. Denschlag, Phys. Rev. Lett. 105, 133202 (2010). 
[2] C. Zipkes, S. Palzer, C. Sias, and M. Köhl, Nature 464, 388 (2010). 
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Cold molecules have a multitude of applications ranging from high resolution spectroscopy and tests of funda-
mental theories to cold chemistry and, potentially, quantum information processing. Prerequisite for these applica-

the molecule needs to be prepared and non-destructively detected. 
We have developed a novel technique to measure the average charge-to-mass ratio of trapped ions with high 

precision through broadband excitation of the ions’ centre-of-mass mode motion and subsequent detection of the 

trapped alongside the molecular ions. Due to the precision of this method, reaction rates and branching ratios can 
be measured even with large ion crystals (up to 100 ions). 

The non-destructive state detection of trapped molecules is still beyond current experiments. Employing state 
selective laser induced dipole forces, we aim to detect the internal state of molecular ions by mapping the state 
information onto the ions’ motion. 

Reference 
[1] Kevin Sheridan and Matthias Keller, , New J. Phys. 13, 123002 (2011). 
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Laser photoassociation (PA) of cold atoms creates excited, weakly-bound molecules, which are key interme-
diates in the most of schemes that allow the formation of cold molecules in the ground state. For that reason the 
spectroscopy of these weakly bound molecules is one of the tools to know, not only the energy position of the levels 
but also if it exists their mixings with neighboring levels. Indeed, the mixings determine the wavefunction shapes, 
especially at short internuclear distance, and thus the Franck-Condon factors required for molecule formation. We 
show that, for an accurate analysis of the PA spectroscopy data, the LeRoy-Bernstein formula has to be improved 

to determine and measure the couplings [2, 3, 4]. 

References 
[1] H. Jelassi, B. Viaris de Lesegno, and L. Pruvost, Phys. Rev. A 77, 062515 (2008). 
[2] H. Jelassi, B. Viaris de Lesegno, and L. Pruvost, Phys. Rev. A 73, 032501 (2006). 
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43, 125301 (2010). 
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Cold ion-polar molecule reactions play important roles in the synthesis of intersteller molecules [1]. Even 
though the chemical reactions in dark interstellar clouds occur at very low temperatures, most of the reaction-rate 
constants in the astronomical database were measured at room temperature. Here we have developed a setup to 
directly measure cold ion-polar molecule reactions. We extended the experiment in Ref. [2] to the rate measure-
ment between sympathetically cooled molecular ions and velocity-selected slow polar molecules. In fact we have 
successfully determined the reaction rate of N2H+ + CH3 3CNH+ + N2 at very low temperatures. The results 
and a discussion of this research will be presented.

References 
[1] V. Wakelam et al.

156, pp. 13-72 (2010). 
[2] S. Willitsch et al., “Cold Reactive Collisions between Laser-Cooled Ions and Velocity-Selected Neutral Molecules”, Phys. 

Rev. Lett. 100, 043203 (2008).
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Physikalisches Intitut, Universität Stuttgart, Germany 

We report on our recent experiments exploring ultralong-range Rydberg molecules. These unusual bound states 
between Rydberg atoms and ground state atoms feature novel binding mechanisms based on low energy electron 

binding energies of dimer and trimer states, further properties are studied in high resolution spectra in the high 

reveal a molecular Stark effect due to a permanent electric dipole moment of the molecules [2].

References 
105, 16 

(2010).
[2] W. Li, et.al., “A homonuclear molecule with a permanent electric dipole moment”, Science 334, 1110 (2011).
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-

RbCs excited electronic states correlated to the lowest 2S + 2P
hamiltonian. We set up potential curves built on long-range atom-atom interaction connected to short-range ab 

momentum of the molecule, and on the sum of projections of the total angular momentum of the separated atoms. 
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We solve the corresponding time-dependent Schrödinger equation in the rigid rotor approximation, taking into ac-

depends on the avoided crossings that the states suffer and on the formation on the quasidegenate doublets in the 

experiments [2]. 

References 
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Ultracold molecules trapped in an optical lattice at high density and prepared in their lowest internal quantum 
state are an ideal starting point for fundamental studies in physics and chemistry, ranging from novel quantum gas 
experiments and cold controlled chemistry to quantum information and quantum simulation. 

In our experiment, we create ultracold and dense samples of molecules in their internal ground state in an opti-
-

sublevel of the rovibronic ground state by a coherent optical 4-photon process with the Stimulated Raman Adiabatic 
Passage (STIRAP) technique while each molecule is trapped in the motional ground state of an individual optical 

aim at producing Bose-Einstein condensates of ground-state molecules by adiabatically removing the optical lattice 
potential.
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In recent years, various ultracold molecule production experiments have been carried out. Molecules are formed 

by the FFR fractional conversion. We study the FFR molecular fractional conversion rate using a Monte Carlo 
simulation based on the stochastic phase space sampling (SPSS) model[1]. The key idea of SPSS is that the phase 
space volume of atomic pairs does not change during an adiabatic magnetic sweep. We have applied this method to 
Fermi-Fermi, Bose-Bose, and Bose-Fermi cases, and have compared our SPSS result with that of the equilibrium 

-
gions that have not yet been experimentally realized.

References 
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One of the greatest challenges of modern physical chemistry is to push forward the limits of electromagnetic or 
laser techniques to probe or manipulate molecules at low temperatures where molecular interactions are dominated 
by pure quantum phenomena. Following our pioneer work [1] we present our recent development concerning the 

2 molecules into a single 
ro-vibrational level (including v = 0, J = 0) of the singlet ground electronic state. Combined with Sisyphus cool-
ing, this method is probably able to produce a large sample of molecules at sub-mK temperature. The principle of 

external potential, 2) dissipative process preventing the reverse motion, 3) repetition of the “one-way” (or ”single 
photon”) process by bringing back the molecules to the initial state.

Reference 
[1] M. Viteau, A. Chotia, M. Allegrini,N. Bouloufa, O. Dulieu, D. Comparat, P. Pillet, “Optical pumping and vibrational cooling 

of molecules”, Science 321 232 (2008).
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Due to less blackbody radiation shifts, mercury atoms are regarded as one of the best candidates for optical 
lattice clock [1]. Here we report our recent progress towards laser cooling and trapping of mercury atoms for the 
ultracold sample ofoptical lattice clock. Several spectroscopies, including saturated absorption spectroscopy (SAS), 
DAVLL spectroscopy and frequency modulation (FM) spectroscopy, were investigated for the frequency discrimi-
nation and stabilization of the 1S0-3P1 UV cooling laser. The ultra-high vacuum system of 3 × 10–9 Torr was designed 
and installed with the mercury source cooled by multi-stage-TEC. The 202Hg atoms were trapped in the MOT, with 

6

References 
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7 atoms with a peak density above 
1×1011 cm-3
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number of atoms can be locally addressed without disturbing the rest of the lattice. If the environment around the 

-

of the Mott Insulator state. By considering spontaneous emission of the atoms trapped in the lattice into the guided 

Reference 
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pairs [5], and simulating quantum many-body physics with strongly-interacting photons [6]. We have combined the 
techniques of two-dimensional magneto-optical trap (MOT), dark and compressed MOT, and optical pumping to 

2 line. 
Attempts to achieve even high optical depths are underway and the results will be presented.
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We have integrated magneto-optical traps (MOTs) into an atom chip which is able to cool and trap ~ 107 atoms 
directly from a thermal background of 87Rb. Diffraction gratings are used to manipulate the light from a single in-
put laser to create the beams required for a MOT[1]. The gratings are etched into the surface of a silicon wafer by 
either electron beam, or photo-lithography making them simple to fabricate and integrate into other atom chip ar-
chitectures. Unlike previously integrated cold atom sources on a chip [2] the atoms now sit above the surface where 

simplify the initial capturing of atoms, representing substantial progress towards fully integrated atomic physics 
experiments and devices. They also offer a simple way to integrate many atom sources on a single device. 

References 
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The RbLi molecule is a promising candidate for exploring novel quantum phases of ultracold molecules owing 
to the relatively large electric dipole moment (4.2 Debye). We developed an apparatus for simultaneous laser cool-
ing of 87Rb and 6Li for the purpose of creating fermionic RbLi molecules. We exploited separate Zeeman slowers 
for each species, which were attached to a stainless-steel chamber kept at ultra-high vacuum (<10-11 Torr). The 
capture velocities for Rb and 6

spectroscopy of Li in a heat-pipe oven for laser frequency stabilization. We found that the Ar buffer gas enhances 
the polarization signal, which is explained by a simple model considering velocity-changing collisions [1]. We 
could simultaneously collect 109 Rb atoms and 108 Li atoms in a magneto-optical trap. We also developed magnetic 

Reference 
[1] Nozomi Ohtsubo, Takatoshi Aoki, and Yoshio Torii. “Buffer gas-assisted polarization spectroscopy of 6Li”, to appear in Opt. 
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Chris I. Laidler and Stefan Eriksson

Optical injection in diode lasers can produce frequency tuneable sidebands[1]. We show that by carefully 
tailoring the frequency and intensity of the injection laser relative to the free running laser we can create narrow 
sidebands suitable for atomic physics experiments. We observe a frequency tuning range which exceeds the modu-
lation bandwidth of the free running laser. Our detection bandwidth limits this measurement to a range of about 20 
GHz, but the tuning range is predicted to be as wide as the longitudinal mode spacing of the diode laser[2] which 
can be of the order of 100 GHz. The sideband intensity can also be controlled by the injection. The output of a laser 
with this injection can be used to simultaneously address two transitions in common alkalis or small heteronuclear 
molecules. We demonstrate the frequency stability of the sidebands by magneto-optical trapping of rubidium using 
light from the injected laser only[3]. We propose further applicationsof the sideband technique. 
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Isotope shifts of natural Sr+

B. Dubost, R. Dubessy, B. Szymanski, S. Guibal, J.-P. Likforman, and L. Guidoni*

Université Paris–Diderot, Sorbonne Paris Cité, Laboratoire Matériaux et Phénomènes Quantiques,  
UMR 7162 CNRS, F-75205 Paris, France  

*luca.guidoni@univ-paris-diderot.fr 

We measured by laser spectroscopy the isotope shifts between natural even-isotopes of strontium ions for both 
the 5s2S p2P  (violet) and the 4d2D p2P
been obtained by simultaneous measurements on a two-species Coulomb crystal in a linear Paul trap containing 
~ 104 laser-cooled Sr+

the solution of the optical Bloch equations describing a three-level atom in interaction with two laser beams. This 
technique allowed us to increase the precision with respect to previously reported data. The results for the 5s2S
5p2P  transition are v88 – v84 = +378(3) MHz and v88 – v86 = +170(2) MHz. In the case of the unexplored 4d2D
5p2P v88 – v84 = +822(6) MHz and v88 – v86 = +400(2) MHz. These results provide more data to 
a stringent test for theoretical calculations of the isotope shifts of alkali-metal-like atoms [1].

Reference 
Precision measurement of the 52 S  – 42 D  quadrupole 

88Sr+ and 86Sr+, Phys. Rev. A 83, 052509 (2011). 
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Yu. Loiko1,2, 1, R. Menchon-Enrich1, G. Birkl3, and J. Mompart1,*

 
 

 
*jordi.mompart@uab.cat 

Ring traps for cold-atom physics can be foreseen as the low-energy counterpart of circular accelerators in 
-

tral atoms in a ring dipole trap coupled to two additional dipole waveguides, by extending our previous work [1] 
to waveguides. By adiabatically following a particular transverse energy eigenstate of the system, the transverse 

adiabatic passage as a function of the atomic velocity along the input waveguide as well as on the initial popula-
tion distribution among the transverse vibrational states. The performance of our proposal has been checked by 
numerical integration of the corresponding 2D Schrödinger equation with state of-the-art parameter values for a 
ring dipole trap with Rubidium atoms. 

Reference 

adiabatic passage”, Phys. Rev. A 83, pp. 033629(1)-033629(7) (2011).
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Bo Zhang

 

superconducting disks and rings. We simulate the current density distributions in these superconducting structures 

-

ease of creating the ring traps and the low noise for trapping atoms make the circular superconducting structures 
attractive for atom chip interferometers. 

Reference 
[1] E. Brandt, , Phys. Rev. B 50, pp. 4034-4050 (1994). 
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microfabricated ion traps

N. M. Linke1,*, D. T. C. Allcock1, L. Guidoni2, C. J. Ballance1, T. P. Harty1, H. A. Janacek1,  
D. P. L. Aude Craik1, D. N. Stacey1, A. M. Steane1, and D. M. Lucas1

1. Clarendon Laboratory, University of Oxford, Parks Road, OX1 3PU, Oxford, UK  
2. Université Paris Diderot, Paris, France  

*linke@physics.ox.ac.uk 

We present recent work on laser cleaning of a microfabricated surface ion-trap. A particular problem in such 
d–4 with ion-surface distance d. Pulses from a 

reduction of an ion trap heating rate [1]. 
We also describe a Doppler cooling and detection scheme for ions with low-lying D levels which suppresses 

scattered laser light background (count rate 1 s–1 –1) [2]. This 
scheme is useful for experiments where ions are trapped near surfaces. 

Finally, we present data characterizing a three-dimensional microstructured gold-on-alumina ion trap. The chip 
has a cross-shaped trapping region with four individual trap arms connected by a central junction. 

References 
[1] D. T. C. Allcock et al., Reduction of heating rate in a microfabricated ion trap by pulsed-laser cleaning, New J. Phys. 13 

123023 (2011). 
[2] N. M. Linke et al., , Appl. Phys. B 0946-2171 1 (2012). 
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Peyman Ahmadi*, Jianwu Ding, Chiachi Wang, and Imtiaz Majid

Nufern, 7 Airport Park Road, East Granby, CT 06026, USA 

head that simplify the use of the technology.

-

is an attractive method to generate new wavelengths that are of interest for AMO community. Results of simple 
external frequency doubling using commercially available PPLN material for creating 532 (nm) with output power 
> 10 (W) will be presented. 
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A. Kowalczyk1,*, C. W. Mansell1, C. MacCormick1, S. Bergamini1,**, and I. Beterov2

 
2. Institute of Semiconductor Physics, Lavrentyeva Avenue 13, 630090 Novosibirsk, Russia 

Utracold, neutral atoms are a potentially scalable platform to physically implement quantum information pro-
-

mentation of the “one-way” model of quantum computation. The set-up includes a high numerical aperture lens 
and a spatial light modulator to create tightly focussed optical dipole traps that can be arbitrarily placed within the 
two-dimensional focal plane of the lens. For our particular case, a tetrahedral MOT design is particularly appeal-

a special case of 4-beam MOT operating at very acute angle, which allows to cool atoms to temperatures of order 

laser-excited to Rydberg states that have strong, long-range, controllable interactions. The controllability of these 
interactions and the controllability of the geometry of the traps give us a highly versatile set-up to investigate the 
creation of multiparticle entangled states, including the “graph states” that are the starting point of the one-way 
model of quantum computation. 



Cooling and trapping… Mo-189 151

information and simulation

Florian Schäfer1,*, Pablo C. Pastor1,2, Giacomo Cappellini1, Jacopo Catani1,2,  
Marco Mancini1,2, Guido Pagano1,3, Massimo Inguscio1,2, and Leonardo Fallani1

1. LENS and Dipartimento di Fisica ed Astronomia - Università di Firenze,  
50019 Sesto Fiorentino (FI), Italy  

2. INO-CNR, Sezione Sesto Fiorentino, 50019 Sesto Fiorentino (FI), Italy  
3. SNS - Scuola Normale Superiore, 56126 Pisa, Italy  

We report on the progress of the new experiment for cooling and trapping of atomic Ytterbium at LENS, 
University of Florence. The current setup includes a thermal Ytterbium atomic beam source, a Zeeman slower 
operating on the 1S0 – 1P1 transition, and a chamber for the MOT (using the 1S0 – 3P1 transition) with an in-vacuum 
optical Fabry-Pérot cavity to implement a FORT trap. We have achieved a BEC of bosonic 174Yb in a crossed 
dipole trap and are currently working with the fermionic (I 173Yb species. The goal is to load the ultra-cold 
atoms into a single layer, 2D optical lattice. There quantum simulations will be performed and the atoms will be 
manipulated individually to implement quantum computing operations. The ultra-narrow clock transition 1S0 – 3P0 

presented. Readout will be done via single site imaging by a high resolution objective lens. 
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Hiroki Takahashi1,2,*, Andrew Riley-Watson1, Alex Wilson1, Matthias Keller1,  
and Wolfgang Lange1

 
2. PRESTO, Japan Science and Technology Agency, Tokyo, Japan  

*ht74@sussex.ac.uk 

quantum communication, cryptography and computing. We have realized a novel photonic system that tightly in-

-

can be extended to implement a coherent ion-photon interface through strong coupling cavity QED. 

Reference 
[1] A. Wilson, H. Takahashi, A. Riley-Watson, F. Orucevic, P. Blythe, A. Mortensen, D. R. Crick, N. Seymour-Smith, E. Brama, 

M. Keller, and W. Lange, , . 
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optical lattices

Giuliano Orso* and Gabriel Dufour

Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Diderot, Paris, France  
*giuliano.orso@univ-paris-diderot.fr 

We investigate the formation of molecules made of two interacting atoms moving in a one dimensional bichro-
matic optical lattice. We derive the quantum phase diagram for Anderson localization of molecules as a function of 

quasi-momentum distribution of molecules. When single particle states show multi-fractal behavior, the binding 
energy of molecules is found to exhibit an anomalous scaling exponent as a function of the interaction strength. 

Reference 
[1] G. Dufour and G. Orso, work in preparation. 
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Calculation of bound states of anisotropic potentials for 

Alexander Pikovski*

Institut für theoretische Physik, Leibniz Universität Hannover, Appelstr. 2, 30167 Hannover, Germany 
*pikovski@itp.uni-hannover.de 

Bound states of the Schrödinger equation in two dimensions for anisotropic potentials V r( )  are considered, 
E → 0  and 

couplings → 0 . Here, the methods of Ref. [1] are used to obtain exact integral equations for the energies and 

can be used to improve convergence. The expressions simplify if V r( )  has some symmetry. In the isotropic case, 
this reduces to what was obtained using the Jost function formalism [2]. Practical applications of the formulas for 
the calculation of bound-state energies are discussed. 

References 
[1] B. Simon, , Annals of Physics 97, 279 

(1976). 
[2] M. Klawunn, A. Pikovski, L. Santos, , Phys. Rev. 

A 82, 044701 (2010). 
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Andrea Bergschneider1,2, Simon Murmann1,2, and Selim Jochim1,2,3

1. Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Germany  
 

 
*gerhard.zuern@mpi-hd.mpg.de 

We have studied few-particle systems consisting of one to six fermionic atoms in two different spin states in 
a 1D harmonic potential. We tune the strength of the attractive interaction between the particles using a Feshbach 
resonance and probe the systemby deforming the trapping potential and observing the tunneling of particles out 

even particle numbers we observe a tunneling behavior which deviates from uncorrelated single particle tunneling 
indicating the existence of pair correlations in the system. From the tunneling timescales of the systems we infer 
the binding energies for different particle numbers which show a strong odd-even effect, similar to the one observed 
in nuclei. 
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F. G. Ribeiro1,2,* and M. D. Coutinho-Filho1

 
 

*fgr@df.ufpe.br 

Quantum MC simulations for correlated electrons on a honeycomb lattice (graphene’s lattice) [1] showed the 
presence of a quantum spin liquid phase between the usual semi-metal phase and an antiferromagnetically ordered 
Mott insulator phase, i.e., for intermediate strength interactions. Also, it was argued that in graphene the “electron’s 
pseudospin” corresponds to a real angular momentum [2]. In this scenario, we present a path-integral approach for 
the pseudospin Hubbard model on the honeycomb lattice in the strong-coupling regime, in which case we show 
that the degrees of freedom of the Lagrangian density of the model exhibit pseudospin-charge separation. In this 
context, the Hamiltonian associated with the charge degrees of freedom is exactly diagonalized. Further, by means 

References 
[1] Z. Y. Meng, T. C. Lang, F. F. Assaad and A. Muramatsu., 

fermions, Nature 464, pp. 847-852 (2010). 
[2] M. Mecklenburg and B. C. Regan, , Phy. Rev. Lett. 106, pp. 116803-

116807 (2011). 
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Borromean window for H2
+ with screened Coulomb 

potentials 

Sabyasachi Kar1 and Y. K. Ho2,*

1. Center for Theoretical Atomic and Molecular Physics, The Academy of Fundamental and Interdisciplinary 
Sciences, Harbin Institute of Technology, Harbin 150080, P. R. China  

 

Search for Borromean states for few-body quantum systems has gained considerable attention in recent 
years [1]. For an N-body system, a bound state is called Borromean state if there is no path to build it via a series 
of stable states by adding the constituents one by one. The Borromean binding is intimately related to two other 

areas such as nuclear physics, molecular physics, chemical physics and DNA. In this study, we are interested to 
search Borromean windows for the H2

+ ions. With abundances of the H2
+ ions in interstellar matter, and with recent 

experimental advancements in the experiments of H2
+ using laser spectroscopy, it is of great important to study vari-

is the screening parameters. In this work, we have estimated the critical range of screening parameters to establish 
Borromean windows for H2

+ for each partial wave states up to L = 4. 

Reference 
[1] S. Kar and Y. K. Ho, Chem. Phys. Lett. 506, 282 (2011), references therein.
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f – nl and 

5p – nl

U. I. Safronova* and A. S. Safronova

Physics Department, University of Nevada, Reno, NV 89557, USA  
*ulyanas@unr.edu 

Relativistic and correlation effects are important in calculations of atomic data for low-ionized W ions. Wave-
lengths, transition rates, and line strengths are calculated for the multipole (E1, M1, E2, M2, and E3) transitions 
between the excited [Cd]4f135p6nl, [Cd]4f145p5nl f145p6 state in Er-like W6+ ion 
([Cd]=[Kr]4d105s2). In particular, the relativistic many-body perturbation theory (RMBPT), including the Breit in-
teraction, is used to evaluate energies and transition rates for multipole transitions in this hole-particle system. This 
method is based on RMBPT that agrees with MCDF calculations in lowest-order, includes all second-order correla-
tion corrections and corrections from negative-energy states. The calculations start from a [Cd]4d145p6 Dirac-Fock 

order RMBPT is used to determine the multipole matrix elements needed for calculations of other atomic properties 
[1]. In addition, core multipole polarizability is evaluated in random-phase and DF approximations. These are the 

ab initio calculations of energies and transition rates in Er-like tungsten. This research was supported by DOE 
under OFES grant DE-FG02-08ER54951. 

Reference 
[1] U. I. Safronova, A. S. Safronova  –– n l

and Yb-like tungsten ions, J. Phys. B 43, pp. 074026 (2010).
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Photons are superior information carriers and, consequently, manipulation of photon states, such as all-optical 
switching (AOS) and cross-phase modulation (XPM), has been considered as a promising means in quantum com-
munication and quantum computation. Due to large nonlinear susceptibilities at low-light levels, the AOS and 
XPM based on the EIT effect make the single-photon operation feasible. However, existence of the four-wave 

operation. Here, we experimentally and theoretically demonstrated that an optimum switching detuning makes the 

results of this work can be directly applied to the EIT-based XPM. Our study provides useful knowledge for the 

Reference 
[1] M. J. Lee, Y. H. Chen, I. C. Wang, and I. A. Yu, Opt. Express 20, 11057 (2012).

Renaud Mathevet1,2,*, Bruno Viaris de Lesegno3, Laurence Pruvost3,  
and Geert L. J. A. Rikken1,2

1. Laboratoire National des Champs Magnétiques Intenses, CNRS-INSA-UJF-UPS,  
143 avenue de Rangueil, F31400 Toulouse, France  

2. Université de Toulouse, LNCMI-T, F-31062 Toulouse, France  
3. Laboratoire Aimé Cotton, CNRS II, Université Paris Sud, 91405 Orsay, France  

*renaud.mathevet@lncmi.cnrs.fr 

We present two experiments involving the interplay between the shape and the polarization of a light beam. 
It can be shown [1] that a gaussian focussed beam, asymptotically linearly polarized, acquires through propaga-

tion a small circular component, essentially in the Rayleigh range around the focal point. Following [2], we experi-
mentally investigate this effect using Magneto-Circular-Dichroism, i. e. differential absorption of the right and left 

We also searched for an analog of MCD using the orbital angular momentum of the beam instead of the intrin-
sic angular momentum associated with circular polarization. The effect, if non-zero for the chosen transition around 

= ±1  Laguerre-Gauss beams.

References 
[1] Davis, L. W., “Theory of Electromagnetic Beams”, Phys. Rev. A, 19, 1177 (1979). 
[2] Yang, Nan and Cohen, Adam E., “Local Geometry of Electromagnetic Fields and Its Role in Molecular Multipole Transitions”, 

J. Phys. Chem. B 115, 5304 (2011). 



156

J. Lehto* and K.-A. Suominen

Turku Centre for Quantum Physics, University of Turku, Finland  

Level crossing models for two-state quantum systems provide an important tool for the study of quantum dy-
namics in a wide variety of physical problems. The most prominent example of these models, the Landau-Zener 
model [1], has been successfully applied in many situations over the years. In the recent years, however, there has 
been a growing interest to study more general dynamics than given by the LZ case [2]. We address and discuss the 
basic characteristics of the special case of superparabolic level glancing, i.e., when the detuning is proportional to 

References 
[1] C. Zener, Proc. R. Soc. Lond. A 137, 696 (1932). 
[2] N. V. Vitanov and K.-A. Suominen, Phys. Rev. A 59, 4580 (1999). 

atomic beam

Paul Knowles*, Jean-Luc Robyr, and Antoine Weis

 

The experiment proposed in [1] for an independent measurement of the third order scalar polarizability of the 

-
ing the Paris [2] measurement. Details of our experiment, the results, and the limiting systematic effects will be 
presented. 
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with the 21st European Frequency and Time forum. pp. 1060–1063 (2007). 
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We present a theoretical and experimental study of spin precession in the presence of both a static and an 

and of arbitrary strength. Due to the intrinsic non-linearity of the system, previous models that account only for 
the simple sinusoidal case cannot be applied. We suggest an alternative approach and develop a model that closely 
agrees with experimental data produced by an optical-pumping atomic magnetometer. We demonstrate that an 

Iavor I. Boradjiev* and Nikolay V. Vitanov

 

We consider the phenomenon of decreasing of the spectral line width with increasing the coupling strength 
(power narrowing) for the case of two-level system coherently driven by a bell-shaped symmetrical pulse, and a 

the problem in the adiabatic basis, by means of analysis of the adiabatic condition, we show that power narrowing 
is possible when the asymptotic behavior of the coupling function is given by a power-low [~ (t T)–q]. The results 
are of potential application in high-precision spectroscopy. 
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R. Thomas*, C. Kupchak, and A. I. Lvovsky
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We investigate EIT in a dense rubidium vapour (N -

window exhibits a sharp cusp whose minimum width was measured to be 1 MHz, which is strong evidence for EIT 
as the natural line width of the transition is 6 MHz [1]. Furthermore, we investigate the effects of EIT on both the 
lateral and angular Goos-Hänchen shifts by measuring the position of a Gaussian beam using a balanced detector. A 

and compared to the experimental data. The possibility of light storage and applications to fundamentally compact 
frequency references [2] and frequency selective beam displacers are discussed. 

References 
[1] Petr Anisimov and Olga Kocharovskaya, J. Mod. Opt. 55, 3159 (2008). 
[2] J. Vanier, Appl. Phys. B 81, 421 (2005). 
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A. Wojciechowski*, K. Sycz, J. Zachorowski, and W. Gawlik

 
 

We present results of our latest experiments on magneto-optical effects in laser-cooled non-degenerate ru-
bidium samples. Interaction of atoms with a linearly polarized light leads to an effective creation of long-lived 
ground-state Zeeman coherences, which is observed through the nonlinear Faraday effect [1] or free induction 
decay signals of the Larmor precession. Coherence life-times of up to a few milliseconds are observed in a simple 
magnetic shield. Application of these effect to the precision magnetometry and its potential limits are presented. 
Moreover, Zeeman coherences form a versatile tool for studying superposition states which are vital to fundamen-
tal atomic physics and quantum information. We demonstrate the dynamics of coherent superposition states under 

instantly create maximum allowed Zeeman coherences [2]. 

References 
[1] A. Wojciechowski, E. Corsini, J. Zachorowski, and W. Gawlik, Nonlinear Faraday rotation and detection of superposition 

states in cold atoms, PRA 81, 053420 (2010). 
[2] G. P. Djotyan et al., Creation and measurement of cohrent superposition states in multilevel atoms, Proc. of SPIE 7998, 

79881A (2011). 
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The direct UV photoexcitation of ground-state potassium atoms to high-lying (n ~ 300) Rydberg states in the 

theory. Even though very-high-n states are close to the classical limit, evidence of quantum optical effects such as 

more complex as multiphoton transitions become important. 
Research supported by the NSF, the Robert A. Welch Foundation, and by the FWF (Austria). 

Michael K. Shaffer*, Grady T. Phillips, Boris V. Zhdanov, Keith A. Wyman, and Randy J. Knize

US Air Force Academy, Colorado Springs, Colorado, USA 
*Michael.Shaffer.ctr@usafa.edu 

Recently, there has been renewed interest in the dynamics of laser driven ionization of alkali metal vapors in a 

environment found in an operating alkali vapor laser1. Multistage photo excitation to high lying states is commonly 
observed and can lead to ionization via direct photo ionization or several collision mechanisms2. Our investigation 
considers two common alkali laser systems where either 133Cs or 85Rb vapors (~1013 3) with 500 Torr of 

laser light driving the n2S 2P 2, will relax to the n2P  state via buffer gas 
collisions, and will lase on the n2P 2S 2. A combination of optical and 
in situ electrical techniques is used to characterize the system.

References
[1] R. J. Knize, B. V. Zhdanov, and M. K. Shaffer, “Photoionization in alkali lasers”, Opt. Express 19 (8), pp. 7894 (2011).
[2] A. G. Leonov, D. I. Chekhov, A. N. Starostin, “Mechanisms of resonant laser ionization”, JEPT 84 (4), pp. 703 (1997).
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Accurate theory of the multiphoton transitions in hydrogen with cascades is formulated on the basis of QED. As 
it was discovered in [1], [2] the 2-photon decay of 2s level led to the escape of radiation from the matter and allowed 
for the hydrogen recombination in the early universe. The escaped radiation is observed now as Cosmic Microwave 
Background (CMB) which properties were measured recently with high accuracy with the cosmic telescopes, 
providing the knowledge about the hydrogen recombination epoch. Recently it was suggested that the two-photon 
radiation from the excited ns n nd( )> ,2  levels could give a sizable contribution to the recombination process [3]. 
Unlike 2s case, the decay of the higher excited levels contains the cascade contribution. The description of such 
decays requires more careful treatment on the basis of QED. We present also a QED theory of the radiation escape 
for the model of the universe containing only two atoms. This model allows to estimate the role of the two- and 
three-photon escape from ns n nd( )> ,2  levels compared to the role of 2s level. The estimate predicts a correction 

References 
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We propose a scheme to probe the quantum coherence in the state of a nano-cantilever based on its magnetic 
coupling (mediated by a magnetic tip) with a spinor Bose Einstein condensate (BEC). By mapping the BEC into 
a rotor, its coupling with the cantilever results in a gyroscopic motion whose properties depend on the state of the 

the presence of quantum coherence in the state of the cantilever. [1] 

Reference 
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Julian Berengut and Victor Flambaum

The results of a very large study of around 300 quasar absorption systems provide hints that there is a spatial 
 [1]. In one direction on the sky  appears to have been 

smaller in the past, while in the other direction it appears to have been larger. A remarkable result such as this must 
-

tion of the fundamental constants in the laboratory, meteorite data, and analysis of the Oklo nuclear reactor can be 
used to corroborate the spatial variation observed by astronomers [2]. In particular we can expect the yearly varia-

tion of  in laboratory measurements to be ɺ ∼/ − −
10

19 1
yr . The required accuracy is two orders of magnitude 

below current atomic clock limits, but there are severalproposals that could enable experiments to reach it. These 
include nuclear clocks and transitions in highly-charged ions that would have very high sensitivity to -variation. 
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We present a novel tool for extremely sensitive and spatially resolved absorption spectroscopy on nanoscale 
objects. To boost sensitivity, multiple interactions of probe light with an object are realized by placing the sample 
inside an optical scanning microcavity. It is based on a laser machined and mirror-coated end facet of a single mode 

sample through the microscopic cavity modeyields a spatially resolved map of absorptivity of the sample. 

polarization sensitive absorption measurements as well as measurements on dispersive and birefringent effects of 
the samples. 
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The high harmonic generation (HHG) process enables an extension to the short wavelength EUV spectral 

produce HHG in Ar gas with 50fs laser pulses. To control HHG we use a spatial light modulator, shaping the wave 
front of the fundamental radiation by introducing spatially distributed phase delays. We show that by imposing ap-
propriate phase structures on the fundamental beam the output of high harmonics can be enhanced many fold, and 
also interference phenomena in HHG can be observed. The extension of the EUV spectrum to shorter wavelength 
due to enhanced energy release in the electron-ion recombination is also possible. This work was supported by the 
Welch Foundation (grant No. A1546) and the NSF (grant No. 0722800).
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femtosecond radiation 
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We studied white-light generation in water using spatially-structured beams of femtosecond radiation. By 
changing the transverse spatial phase of an initially Gaussian beam with a 1D spatial light modulator to that of 
Hermite–Gaussian modes (HGn,m), we were able to generate beams exhibiting phase discontinuities and steeper in-
tensity gradients. Under certain experimental conditions, when the spatial phase of an initial Gaussian beam (show-

01, or HG11

white-light was generated. Because self-focusing is known to play an important role in white-light generation, the 

of the laser intensity for beams having step-wise spatial phase variations were modeled using the Huygens-Fresnel- 
Kirchhoff integral in the Fresnel approximation and were found to be in excellent agreement with experiment. This 
work was supported by the Robert A. Welch Foundation (grant No. A1546), the National Science Foundation (grant 
No. 0722800).
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We present a method that harnesses coherent control capability to two-dimensional Fourier-transform optical 
spectroscopy. For this, three ultrashort laser pulses are individually shaped to prepare and control the quantum 
interference involved in two-photon interexcited-state transitions of a V-type quantum system. In a three-pulse 
coherent control experiment of atomic rubidium, the phase and amplitude of controlled transition probability is re-
trieved from a two-dimensional Fourier-transform spectral peak and we show theoretically and experimentally that 
two-photon coherent control in a V-shape three-level system projects a one-photon coherent transient in a simple 
two-level system. The second- and third-order spectral phase terms of a shaped laser pulse play the roles of time 
and quadratic spectral phase, respectively, in conventional coherent transients [1, 2]. 

References 
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few-cycle laser pulses. We demonstrate quantitative agreement between ab initio
level over an unprecedented range of laser intensity and electron energy [1] and use the results to perform laser in-

of the H photoelectron yield, which will enable accurate ab initio calibration of absolute laser CEP. 
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F.-J. Jiang

 

-
gered anisotropy on the square lattice, we re-investigate the phase transition of this model induced by dimerization 

s12L s22L, where 
L si with i  {1, 2} is the spin-stiffness in the i-direction. 

s12L s22L exhibit 
a good scaling behavior without any indication of a large correction. As a consequence, we are able to obtain a 
numerical value for the critical exponent v which is consistent with the known O(3) result with moderate computa-

s22L to their expected scaling form, we obtain v = 0.7120(16) 
which agrees quantitatively with the most accurate known Monte Carlo O(3) result v = 0.7112(5). 
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around the atomic cloud. An active compensation system is being designed, with the measurement outcomes feed-
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z , can then be compensated. Additional informa-
-

the level of 0.1 mG for for the ultracold strontium experiment. 
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Random laser in cold atoms
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Random lasing in a medium with scattering and gain has been predicted by V. Letokhov [1] with threshold is 
given by a critical size of the medium required to overcome losses via scatetring through the surface. Such random 
lasing has is also under investigation in astrophysical systems [2], where non thermal equilibrium coniditions can 
exist in dilute cloud of plasma. Many random lasers based on condensed matter systems have been realized in the 
last 25 years, but the existence of gaz lasers, the realization of random lasing in dilute atomic vapours has not been 
reported. We show that a cloud of cold atoms can be a good tool to study random laser with resonance scattering 

enhanced scattering for the anti-stockes photon, gain and scattering have been combined with a single atomic spe-
cies of 85Rb. We observe signatures of random lasing in the total emission which displays a threshold behaviour 
with optical thickness of the cloud. 

References 
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The internal disorder of Rydberg atoms as contained in their position and momentum probability densities is 

expectation values, the Shannon entropy and the Fisher information. The leading term of these quantities is rigor-
ously calculated by use of the asymptotic properties of the concomitant entropic functionals of the Laguerre and 
Gegenbauer orthogonal polynomials which control the wavefunctions of the Rydberg states in both position and 
momentum spaces. The associated generalized Heisenberg-like, logarithmic and entropic uncertainty relations are 
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It is well known, when a plane electromagnetic wave passing through an interferometer (for example Fabry-Pe-
rot or Michelson) its transmission bands are equidistant with an interval equal to radiation half wavelength. This has 
been the basis for creating the optical ruler, in which stabilized laser wavelength serves as the reference length [1]. 
The femtosecond laser [2] can be used for creation of the length standard too. In the present study it was found that 
the shape of the interferometer passbands is asymmetric due to laser beam divergence. Physics of this phenomenon 
is caused by the difference between wavefront curvatures of interfering light beams. It is shown that the asymmetry 
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Atomic physics experiments based on ultracold atoms have a wide range of applications beyond the laboratory 

are likely to play a crucial part in emerging quantum based technologies such as cryptography, quantum simulators, 
networks and information processing. Over a decade of research has been devoted to translating these experiments 
onto microfabricated platforms known as atom chips. These are, however, far from ‘lab-on-a-chip’ and remain 

laser systems and detectors, which have yet to be completely miniaturized. Our research is directed at tackling 

perform the roles of standard atomic physics apparatus in an integrated and mass-manufacturable way. Our initial 
studies into obtaining, maintaining and measuring ultrahigh vacuum in a micro-litre cavity are presented as well as 
integrated atom sources and novel magneto-optical trap geometries. 
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Important achievements have been accomplished until now in neutral particle interferometry. To extend this 

stable interferometer for ions and charged molecules. It potentially combines the advantages of electron, atom 
-

tron beams can be applied on ions together with the possibility of laser manipulation of ionic states or thermal 
rovibrational excitation in charged molecules. Such an interferometer can cover fundamental Aharonov-Bohm 
experiments that were up to now mainly accessible for pointlike electrons, for particles with inner structure and test 
gauge and decoherence theories. In our setup, a stable and coherent ion beam will be separated and recombined by 

sensitive, compact sensors for rotation and acceleration.

Atom interferometry Tu-002

condensates

Alice Sinatra1,*, Yvan Castin1, and Emilia Witkowska2

 
 

*alice.sinatra@lkb.ens.fr 

Quantum correlations could be used in atomic clocks and interferometers to increase their sensitivity with re-
spect of using uncorrelated atoms. A simple class of states useful for metrology are spin squeezed states. Recently 
such states could be obtained using interactions in condensates with two internal states [1]. A crucial question is 

atom number N
a spatially homogeneous system and show that it is bounded from above by the initial non-condensed fraction [2]. 
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Interferometers using N uncorrelated (non-entangled) particles are fundamentally limited by shot-noise to an 

interferometric phase uncertainty of ∆ ≥ /1 N . This standard quantum limit (SQL) is particularly relevant in 

with small probe size (small N
limit ∆ ≥ /1 N. 

uncertainty of 4.0 dB below the SQL [1]. Our interferometer employs N = 1300 entangled atoms in a spin-squeezed 
state and maintains performance below the SQL for Ramsey interrogation times up to 20 ms. Using an atom chip, 
we spatially scan the spin-squeezed atoms over 10 m while maintaining sub-SQL operation. We perform a quan-
tum-state tomography of our interferometer input state [2], demonstrating a spin noise reduction of up to 4.5 dB 

References 
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We have demonstrated laser controlled tunneling of 87Rb atoms in a vertical optical lattice using two- photon 
Raman transitions [1], allowing performing high resolution laser spectroscopy of Wannier Stark (WS) states. A 

This realizes a trapped atom interferometer, which, in our geometry, is sensitive to the difference in gravitational 
potential energies between the coupled WS states, allowing for a precise measurement of the Bloch frequency 

= , where m is the mass of the 87Rb atom, g the gravity acceleration, and  the lattice laser wavelength. We 
have reached a relative sensitivity on  of 10-5

References 

vertical optical lattice”, Phys. Rev. Lett. 106, 213002 (2011).
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Mikhail Egorov1,2, Russell Anderson1,2, Valentin Ivannikov1, Bogdan Opanchuk1, Peter Drummond1, 
Brenton Hall1, and Andrei Sidorov1,*

 
2. Monash University, Melbourne, Australia 

We report that atomic interactions not only lead to quantum and spatial dephasing of a trapped BEC inter-

coherence of an interacting two-component Bose-Einstein condensate of 87Rb atoms surviving for seconds in a 

rephasing of condensate wave functions with a slow decay of the interference fringe visibility. We apply spin echo 
-

.75 at the evolution time of 1.
higher visibility than experimentally observed values. We quantify the effects of classical and quantum noise and 
infer a coherence time of 2.8 s for a trapped condensate of 5.5 × 104 interacting rubidium atoms.
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Melbourne 3122, Victoria, Australia  

-
ferometry. We show that the new entanglement measure is directly proportional to enhanced phase-measurement 
sensitivity. As an example, we calculate the phase-entanglement of the ground state of a two-well, coupled Bose-
Einstein condensate, similar to recent experiments[1]. We show that a new type of quantum squeezing is found, 
namely planar quantum squeezing [2], which squeezes two orthogonal spin directions simultaneously. This is pos-
sible owing to the fact that the SU(2) group that describes spin symmetry lives in a three-dimensional space, of 
higher dimension than the group for photonic quadratures. The advantage of planar spin-squeezing is that, unlike 
conventional spin-squeezing, it allows noise reduction over all phase-angles simultaneously. 
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In this poster we present a novel type of output coupling of an atom-laser from a BEC. Traditional output 

BEC. The gravitational output coupler, presented here, uses a strong dress the trapping potential of a 
Ioffe-Pritchard magnetic trap such, that a small hole is created in the very bottom of the trap. The gravitational 

-
mF = 2 state. This not only increases 

thebrightness of the atom laser by a factor of 5, but also raises the spectre of a reversible atom laser, where the beam 
not only exits, but also enters a BEC. We demonstrate well-collimated atom beams – both of thermal and condensed 
origin – and discuss their transverse coherence. 
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We report on the implementation of a Bragg-type interferometer operated with a chip-based atom laser for Ru-
bidium 87Rb. With the chip based atom laser we can generate thermal ensembles as well as Bose-Einstein conden-
sates (BEC)[1]. With the help of delta-kick cooling [2], implemented via the atom chip, we can further slow down 
the expansion of thermal and condensed atoms. In addition, the chip allows transferring atoms in the individual 

could extend the observation of a BEC of only 104

in microgravity we could combine this with an asymmetric Mach-Zehnder type interferometer over hundreds of 
milliseconds to study the coherence and to analyze the delta kick cooling with the help of the observed interference 
fringes.
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on a chip

B. Yuen, I. J. M. Barr, J. P. Cotter, F. Baumgärtner, R. J. Sewell, S. Eriksson  
I. Llorente-Garcia, J. Dingjan, and E. A. Hinds

We investigate the use of a Bose-Einstein condensate trapped on an atom chip for making interferometric mea-
surements of small energy differences[1,2]. A nearly pure condensate is split horizontally using an RF magnetic 

is turned off allowing the clouds to interfere in free fall. For varying height separations we measure the relative 
phase difference between the clouds from the observed fringes in the atomic density distribution. We measure and 
explain the noise in the energy difference of the condensates, which derives from the binomial distribution in the 

considered systematic errors and are now working towards more precise control of the atoms. This will improve the 
accuracy that the interferometer can achieve. 
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space applications
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We have developped a compact, robust and transportable cold atom inertial sensor to test the Univarsility of 

87

reject vibrations by correlating the atom sensor with an external mechanical accelerometer [2]. 
The next step, by adding another atomic species (39K) to our system, is to perform a test of UFF. We have con-

structed a dual-wavelength laser system and performed simultaneous cooling of Rb and K in two species MOT. 
We will then use the atom interferometer to measure the differential acceleration between the two atom clouds in 
free-fall. This will be an important step towards a space-based test at the level 10–15, such as the one planed in the 
frame of ESA’s STE-QUEST mission [3]. 
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Bright solitons [1, 2] are suitable candidates for matter-wave interferometry due to their self focusing, and 
non-dispersive nature. In our experiments, we use the broad Feshbach resonance of 7Li in the 1 1,  state to tune the 
scattering length through zero to small negative values to form a single bright matter wave soliton close to the criti-

interaction with a thin potential barrier formed by a near-resonant, blue detuned, cylindrically focused laser beam 
that perpendicularly bisects the trapping beam at its focus. Through adjustment of the barrier potential, the soliton 

soliton we study the phase dependent interactions on the subsequent barrier interaction. 
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State of the art clocks carry out frequency measurements at the eighteenth decimal place [1]. As the projected 
“end-of-the-road” fractional accuracy of such clocks is at the level of 10–18, it is natural to wonder how to extend 
the accuracy frontier even further. While the nuclear clock [2] holds a promise of a projected accuracy at the 
improved 10–19 level, it relies on a yet unobserved optical transition in the radioactive 229Th nucleus. Considering 
large uncertainties of nuclear models, the frequency of that transition can not be reliably computed. Here we show 
that the nuclear clock performances can be replicated with atomic systems, fully overcoming these challenges. We 
identify several highly-forbidden laser-accessibe transitions in heavy stable isotopes of highly-charged ions (HCI) 
that may serve as clock transitions. Similarly to the singly-charged ions of modern clocks [1], HCIs can be trapped 
and cooled. The key advantage of HCIs comes from their higher ionic charge. As the ionic charge increases, the 
electronic cloud shrinks thereby greatly reducing couplings to detrimental external perturbations. Our analysis of 
various systematic effects for several HCIs demonstrates the feasibility of attaining the 10–19 accuracy mark.
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Frequency standards based on optical atomic transitions show great promise as next generation clocks and 
some have already demonstrated frequency stabilities and systematic uncertainties better than the current caesium 
fountain microwave primary frequencystandard [1, 2]. One prime example is the Sr optical lattice clock, which has 
reached fractional frequency uncertainties at the level ~ 1 × 10–16 in several laboratories, limited by knowledge of 
the black-body radition (BBR) induced frequency shift [1]. At NPL, a Sr optical lattice clock apparatus is under 
development with the capability to directly measure the BBR-induced frequency shift. As an initial step, we have 

report on recent progress, with focus on compact narrow linewidth clock laser systems, novel BBR measurement 
apparatus, and characterisation of the permanent-magnet Zeeman slower. 
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Optical lattice clocks based on alkaline earth atoms outperform single ion clocks [1] in measurement precision, 
and they have the potential to catch up with ion clocks in overall systematic uncertainty. The fractional uncertainty 

–16 [2]. To demonstrate a much smaller 
systematic uncertainty, we have built a second generation lattice clock based on a cavity enhanced optical lattice 

improves our signal to noise and reduces density-dependent collision shifts. Comparing our two strontium clocks, 
we are able to average down to the 10–17 level in 500 s. We report on our progress using this unprecedented stability 
to evaluate systematics beyond the 10–17 level. 
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N. Huntemann, B. Lipphardt, M. V. Okhapkin, Chr. Tamm, and E. Peik

We investigate an optical frequency standard based on the 467 nm electric-octupole transition 2S 2F  in a 
single trapped 171Yb+ ion. The extraordinary features of this transition result from the long natural lifetime and from 
the 4f 136s2 2F  state are smaller 
than for the metastable D states in the alkaline earth ions. Recently, we have realized the unperturbed frequency of 
the octupole transition with a fractional uncertainty of 7.1 × 10–17

is caused by the light shift induced by the laser driving the octupole transition. We have thereforeimplemented the 
generalized Ramsey excitation scheme proposed in [2] – using two pulses that are tailored in duration, frequency 
and phase. We demonstrate the elimination of the light shift dependence of the frequency of the central Ramsey 
resonance, which largely reduces the corresponding uncertainty. 
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 Tu-016 Atomic clocks

and U nuclear clocks

Julian Berengut, Vladimir Dzuba, and Victor Flambaum

The low-energy (7.6 eV) transition in Th-229 could provide a reference for an optical clock of extremely high 
accuracy [1, 2]. Nuclear clocks would be very sensitive probes of any potential changes to the values of funda-
mental constants of nature [3, 4]. The 76 eV isomeric transition of U-235 has some potential advantages over the 
Th-229 transition, not least that its properties (energy, line width) are well known. With recent advances in high-UV 
frequency combs using high-harmonic generation [5] the transition may come within laser range in the foreseeable 
future. We present results of nuclear and atomic calculations that show a U-235 nuclear clock would have compa-
rable accuracy to the Th-229 clock, and an absolute sensitivity to variation of fundamental constants that is larger 
than any other proposed laboratory reference standard. 
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Ultra-stable laser local oscillators
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Laser frequency stabilization via spectral-hole burning has the potential to extend laser coherence beyond 
what is possible with Fabry-Pérot cavities. Spectral holes in Eu3+

2SiO5 crystals are less sensitive to the thermal 
noise that limits optical cavities [1], and for two crystals we observe differential fractional-frequency noise below 
4 × 10–17. The absolute performance is currently limited by technical noise at an Allan deviation of 2 × 10–16 with 
atypical drift rate of 3 × 10–17

sensitivity of 2(1) × 10–11 –12

Supported by DARPA, ONR, and AFOSR. 
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In this poster, we describe an optically pumped cesium-beam frequency standard (JPO) under reconstruction 
at the National Centre for Nuclear Science and Technology (CNSTN) in Tunisia. This prototype instrument which 

The aim of this project is the transfer of JPO clock from SYRTE to CNSTN. It will be rebuilt in Tunisia, studied 
and characterized. New approaches will have to be found in order to evaluate its accuracy without having an onsite 
reference clock, but using comparisons by satellite. The purpose of the project is also to demonstrate the feasibility 
of improving the performance of the optically pumped cesium beam clock. 
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We show that four group IIIB divalent ions, B+, Al+, In+, and Tl+ have anomalously small blackbody radiation 
(BBR) shifts of the ns2 1S0 – nsnp 3P 0

o  clock transitions [1, 2]. The fractional BBR shifts for these ions are at least 
10 times smaller than those of any other present or proposed optical frequency standards at the same temperature. 

-
duce the BBR contribution to the fractional frequency uncertainty of the Al+ clock to 4 × 10–19 at T = 300 K. We also 
reduce the uncertainties due to this effect at room temperature to 10–18 level for B+ In+, and Tl+ to facilitate further 
development of these systems for metrology and quantum sensing. These uncertainties approach recent estimates 
of the feasible precision of currently proposed optical atomic clocks. 
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-
surements of h/M for 87Rb [1] combined with the Rydberg constant, atomic transition frequencies, and the atomic 
masses of the electron and of 87Rb [2]. An improved photon-recoil value for alpha will enable the combination 
of theory and experiment for the g-factor of the electron (which produces the most precise value for alpha), to 
provide an improved test of QED. Besides the alkalis, isotopes of the alkaline-earths and ytterbium make promis-
ing candidates for precise photon-recoil measurements of h/M(atom). In addition, the mass of 40Ca is required for 
obtaining the g
of Ca19+, which can be used to test bound-state QED [3]. For these and other applications, by measuring cyclotron 
frequency ratios of pairs of ions in a cryogenic Penning trap, we obtain the atomic masses of 40Ca, 86,87,88Sr, and 
170,171,172,173,174,176Yb, to a relative precision in the region of 2 x 10-10.
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Measurement of a non-zero electric dipole moment (EDM) of the electron within a few orders of magnitude of 
the current best limit [1] of 1.05 × 10-27 e × cm would be an indication of CP violation beyond the Standard Model. 
The ACME Collaboration is searching for an electron EDM by performing a precision measurement of spin pre-
cession signals from the metastable 3

1 state of thorium monoxide (ThO) in a cold and slow beam. We discuss the 

We have achieved a one-sigma statistical uncertainty of 7 × 10-29 √‾T, where T is the experimental running 
time in days, based on a data set acquired from 14 hours of running time over a period of two days.

Reference 
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We have measured the absolute frequency of the 1557-nm doubly forbidden transition between the two meta-
stable states of helium, 2 3S1 (lifetime 8000 s) and 2 1S0 (lifetime 20 ms), with 1 kHz precision [1].With an Einstein 

-7 s-1 this is one of weakest optical transitions ever measured. The measurement was performed in 
a Bose-Einstein condensate of 4He* as well as in a Degenerate Fermi Gas of 3He*, trapped in a crossed dipole trap. 

3 3P transition [2].  
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resolving transitions in atomic argon and neon at 82 and 63 nm, respectively. The XUV frequency comb is generated by 
frequency up conversion of a near-infrared frequency comb via intra-cavity high-harmonic generation. It is capable of 

linewidth of 10 MHz, limited by Doppler broadening, is unprecedented in this spectral region and provides a stringent 
upper limit on the linewidth of individual comb teeth. The measured transition frequency of 3,655,454,073 ± 3 MHz is 
limited by residual Doppler shifts and provides ~103 times improvement over earlier measurements. We will also discuss 
ongoing XUV comb coherence studies via heterodyne beat of two such combs, which will provide a new paradigm for 
high precision tests and spectroscopy in the XUV.
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The precision measurement of an electron electric dipole moment (eEDM) is an experiment that tests fundamental 
3

1 metastable 

coherence times [2]. To create HfF+

beam of neutral HfF molecules to a Rydberg state, which then autoionizes into predominantly a single rovibrational level 
of HfF+ in its ground 1 + state. The autoionized HfF+ in the ground state can then be transferred to the 3 1 state using transi-

out of energy levels of HfF+ up to 15000 cm–1

promising transitions to the 3
1 state; the loading and trapping of ions in a novel radiofrequency Paul trap optimized for 

the National Science Foundation and the Marsico Endowed Chair. 
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We are presently starting a project aiming to fully characterize a new generation of atomic gyroscope based 
on the detection of a nuclear spin orientation with an alkali magnetometer [1]. The key element of the device is a 

gas (Rb, K…) with an electronic spin and a noble gas (3He, 21Ne, 129Xe…) with a nuclear spin. The noble gas is 
-
-

lisional regime (Spin Exchange Relaxation Free – SERF) allowing the realization of an ultra sensitive in situ alkali 
magnetometer [2] which detects the nuclear spin dynamic and then gives us a rotation measurement of the system. 
Our project deals with the conception, realization and characterization of this nuclear-electronic spin gyroscope 
very promising for applications requiring miniature sensors with a high performance.
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Ultra-high-resolution spectroscopy enables to test fundamental physics with molecules such as parity non con-
servation 0 or the stability of the electron-to-proton mass ratio 0. It is thus very challenging to develop an ultrastable 
frequency stabilization scheme in the mid-IR region where molecules exhibit rovibrational transitions. We have 
built a frequency chain which enables to measure the absolute frequency of a CO2 laser emitting around 10 µm 
and stabilized onto a molecular absorption line. The set-up uses an optical frequency comb with sum-frequency 
generation. The frequency reference is an ultrastable 1.55 µm laser, transferred from SYRTE to LPL by an optical 
link [3]. We are now progressing towards the frequency stabilization of the IR laser via the frequency comb and the 
extension of this technique to quantum cascade lasers for a larger spectral range.
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SYRTE is developing an ensemble of high performance atomic clocks comprising 3 laser-cooled atomic foun-
tain clocks [1], 3 optical lattice clocks and ultra stable microwave and optical oscillators. Such an ensemble pro-
vides many possibilities for testing fundamental physical laws, relying on the high accuracy and stability of these 

87Rb and 133

using the fountains. The measurements over 14 years set a stringent limit to a possible variation with time, and 

simultaneous operation with Rb and Cs in one fountain  [2]. Combining with other available highly accurate clock 
comparisons, we provide independent constraints on today time variations and couplings to gravity of the 3 con-

mq QCD, and electron-to-proton mass ratio me mp. 
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fundamental constants

Julian Berengut, Vladimir Dzuba, Victor Flambaum, and Andrew Ong

Optical transitions can occur in some highly charged ions (HCIs) when the ion stage and nuclear charge are 
tuned such that orbitals with different principal quantum number and angular momentum are nearly degenerate [1]. 
In these cases thetransition energy may be within laser range even though the ionisation energy is large (of order 

that could make them suitable for atomic clocks with high accuracy. Strong E1 transitions provide options for laser 
cooling and trapping, while narrow transitions can be used for high-precision spectroscopy and tests of fundamental 
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We construct generalisations of Leggett-Garg (LG) inequalities [1] that test realism (R) and non-invasive mea-
surability (NIM) in multi-particle scenarios not limited to two outcomes. The inequalities provide a means to quan-
tify the level of realism and NIM being tested – from micro, though to meso and, ultimately, macro – with the inclu-
sion of parameters S
number. We show how these LG inequalities are predicted to be violated by dynamical correlated systems, as might 
be realised using double-potential well Bose-Einstein condensates, and atom interferometers [2]. The measured 
output of a Mach-Zehnder interferometer can reveal violations of these inequalities, and be used to falsify classical 

ideal-negative result, and weak quantum nondemolition QND number measurements [3]. 
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The beta decay of 6He presents a unique opportunity to search for new physics. Determining the correlation 
between the electron and the anti-neutrino allows searching for tensor currents predicted by extensions of the Stan-

6He is ideal for this search because it 
is a light nucleus and yields a recoiling 6

measuring the 6Li ion allows kinematic reconstruction of the neutrino momentum. Up to the present the precision 
has been limited due to either low number of 6He atoms (nuclear half-life < 1 second) or interactions of the 6Li 
ions with the environment. To overcome these limitations we have developed the most intense source of 6He in the 
world [1] and we have set up a MOT. We have succeeded in trapping 30 atoms already. We also developed an origi-
nal method, using an additional cycling transition, which allows detection of a few atoms in spite of the unavoidable 
light scattering from the intense trap lasers. Results will be presented. 

Reference 
[1]  A. Knecht et al., Nucl. Instrum. Methods Phys. Res., Sect. A 660, 43 (2011). 



184 Tu-031 Precision measurements…

sensors in space

Ahmad Bawamia1,*, Anja Kohfeldt1, Max Schiemangk2, Erdenetsetseg Luvsandamdin1, Christian Kuerbis1, 
Stefan Spiessberger1, Alexander Sahm1, Andreas Wicht1, Goetz Erbert1, Achim Peters1, 2, and Guenther Tränkle1

 
 

-
-

2 and make use of either already 

for Rubidium BEC and atom interferometry experiments at 780 nm we achieved an intrinsic linewidth of 190 kHz 
at 1 W and of 300 Hz at 35 mW, respectively. The MOPA module has been successfully vibration tested up to 8 
gRMS random noise, and micro-integrated modules based for 1060 nm that are based on the same integration tech-
nology have successfully passed vibration tests up to 29 gRMS and 1500 g pyro-shock. Further, we outline the next 
steps in diode laser system micro-integration that combine the MOPA and ECDL concepts with micro-integrated 

wavelengths.
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The comparison between measured and calculated transition frequencies in atomic hydrogen can provide strin-
gent tests of bound state QED. For the last decade, this comparison has been limited by the proton charge radius de-
termined by electron-proton scattering. Recently, laser spectroscopy of muonic hydrogen provided a value, which 
is ten times more accurate than any previous measurement [1]. But this value differs from the CODATA 2010 
value, obtained by a global adjustment of fundamental constants using data from electron-proton scattering and 
hydrogen experiments for the proton charge radius, by seven standard deviations [2]. The muonic hydrogen result 
led to a comprehensive search for the cause of this discrepancy, but no convincing argument could be found so 
far. Because the current CODATA value is mainly based on observations in atomic hydrogen, transition frequency 
measurements with improved accuracy can help to solve this puzzle or at least to rule out hydrogen experiments asa 
possible source for the discrepancy. Here we report on the setup which has been developed for the measurement of 
the one-photon 2S -4P  transition frequency and discuss our preliminary results. 
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done in May 2011 against the LNE-SYRTE transportable cesium fountain clock FOM has shown a fractional un-
certainty of 4.2×10-15 [1], 3.3 times better than for the previous result from 2003. The second measurement was per-
formed in November 2011 using distant CSF1 fountain clock at PTB, Braunschweig. To compare frequencies we 

transition frequency we can constrain the linear combination of Lorentz boost symmetry violation parameters in 
the SME framework. 
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I will present the most recent precision measurements done with ultracold strontium atoms trapped in optical 
lattices. While fermionic 87Sr atoms have been considered a good candidate for future optical clocks aiming to 10-17 
relative accuracy or below [1], we concentrated on accurate measurements of gravity with the most abundant 88Sr 
bosonic isotope. The long coherence time in Bloch oscillation exploited with 88Sr trapped in vertical optical lattice, 
allow to observe more than 104 Bloch oscillations with a resulting resolution of 10-7 in gravity measurements, with 
no fundamental limit to reduce the resolution by another order of magnitude. Detailed study of systematic effects 
and a comparison with a classical FG5 gravimeter will be presented [2]. Furthermore, I will present the status of the 
recent developed compact and transportable version of a strontium optical lattice clock [3] and the prospect toward 
optical frequency comparisons with primary frequency standards in Italy.
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The current upper limit on the electron electric dipole moment (EDM) is | | < . ´ −
d e
e

10 5 10
28  cm [1], from 

-

extensions to the Standard Model of particle physics [2]. 
We have implemented the evaluation of the electron EDM Hamiltonian operator as an expectation value over 

four-component molecular Dirac wavefunctions including the contributions of dynamic electron correlation. The 
electronic-structure programs used in this approach are the KR-CI module [3] of the DIRAC10 program package. 
In initial applications we show the importance of dynamic electron correlation effects on the �, -odd interaction 
constant d in the IH+ molecular ion, a possible candidate [4] in the search for the electron EDM. 
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Historically, the use of statistical methods for the description of complex quantum systems was primarily moti-
vated by the failure of a line-by-line interpretation of atomic spectra. Such methods reveal regularities and tenden-
cies in the distributions of levels and lines. Up to now, much attention was paid to the distribution of energy levels 
(Wigner surmise, random-matrix model...). However, information about the distribution of the lines (energy and 

lines whose intensities lie between 2kI0 and 2k+1I0, I0 being a reference intensity and k an integer, is a decreasing lin-
ear function of k [1, 2]. In this work, the fractal nature of such an intriguing regularity is outlined and a calculation 
of its fractal dimension is proposed. Other properties which remain unexplained are also presented, such as the role 
of quantum chaos or the fact that the distribution of line strengths follows Benford’s law of anomalous numbers [3]. 
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We have used collinear laser spectroscopy to measure on-line nuclear moments and charge distributions of 
many short lived isotopes. Experiments were done at ISAC, JAEA , and Riken. Nuclei are known to have spherical, 
prolate, oblate and exotic octopole shapes. All of these are rotationally symmetrical. We have further evaluated our 

129-135La show a rare none rotationally symmetrical triaxial shape 
in their ground states. That means their masses are distributed unequally along the three axes of length, width and 

No. A1546).
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We present theoretical and experimental results on optically detected magnetic resonance (ODMR) signals in 
the 3S -3P , D1 transition of a hot Na atomic vapor [1], particularly focusing on the dependence of the ODMR 
signals on the incident light polarization. We have found that, while circular polarization gives the largest ODMR 
signal for the Zeeman end-resonances including (F = 2, mF = ±2 levels, elliptical polarization is much more favor-
able for the observation of the inner Zeeman transitions. Detailed theoretical analysis based upon the rate equations 
including all the Zeeman sublevels is presented. Experimentally, the nuclear Zeeman splitting has been observed 
by using elliptical polarization. Satisfactory agreement has been obtained between theoretical simulations and 
experimental results. 
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We present both theoretical and experimental results for the absorption of a linearly polarized weak probe 
D2 line while the frequency of a circularly polarized 

pump beam, either co- or counter-propagating with the probe beam, is scanned either across the same manifold or 
through the 5P D transition. Using balanced detection, we recorded separately variations in the intensities of 
the two mutually orthogonal linearly polarized components of the probe beam, which corresponds to measuring 
the birefringence induced on the atomic vapor by the pump beam. In both co- and counter-propagating cases we 

calculations based on rate equations allowed us to determine the population differences between the 5S and 5P 

left circularly polarized light as functions of the pump light frequency and intensity obtaining excellent agreement 
with experimental spectra. These results were applied to the development of modulation-free laser frequency sta-
bilization techniques. 
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We have observed electromagnetically induced polarization rotation (EIPR) in the 3S -3P -4D  and 3S -
3P -4D  three-level ladder systems in a hot Na vapor [1]. In the presence of a strong circularly-polarized 
coupling beam resonant to the upper ladder transition, the polarization angle of a probe beam, resonant to the 
lower ladder transition, was rotated by up to 18 degrees. The EIPR spectra exhibited a unique double-dispersion 
feature, which was related to the EIT (electromagnetically induced transparency)-circular dichroism spectra by the 
Kramers-Kronig relations and was more pronounced for the higher coupling powers. The optical switch experiment 
based on EIPR gave a fast response of less than 100 ns. 

Reference 
[1]  N. Hayashi, A. Fujisawa, H. Kido, K. Takahashi, and M. Mitsunaga, 

, J. Opt. Soc. Am. B27, pp. 1645-1650 (2010). 
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We present a singly-resonant, 1064-nm-pumped, cw optical parametric oscillator (OPO), emitting more than 

region. Both pump and signal are frequency stabilized to a near-infrared optical frequency comb, referenced to the 
Cs primary time standard. A fractional Allan deviation of ~ 3 × 10–12  has been estimated between 1 and 200 s. 
As a test, we carried out sub-Doppler spectroscopy of rovibrational transitions of CH3I around 3.4 m, resolving 

determining absolute frequencies with a statistical uncertainty of 50 kHz [1]. The availability of such a precise and 
powerful source is of primary interest for spectroscopic studies of subtle effects, tests of fundamental theories, or 
optical manipulation of molecules.

Reference 
[1]  I. Ricciardi et al., A frequency-comb-referenced singly-resonant OPO for sub-Doppler spectroscopy, Optics Express 20, 

9178–9186 (2012). 
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This work presents the design and implementation of a LabView based system for controlling and stabilizing 
the frequency of extended cavity diode lasers. The system was developed for creating a magneto-optical trap for 
rubidium atoms. Hence, our system automatically scans the frequency of our lasers across the D2 line and then locks 
it to any of the transitions or crossovers in the manifold. A polarization spectroscopy apparatus [1] is used to gener-
ate a dispersion signal to feedback the laser after a simple PID algorithm implemented entirely within LabView. The 
lock bandwidth is ~ 2 MHz. Currently, we are capable of controlling two lasers simultaneously and independently. 
An additional advantage is that the locking point over the transition spectrum can be controlled in realtime while 
the laser frequency remains locked. Although the system was developed for a magneto-optic trap experiment, it can 
be used in a wide variety of control applications. 

Reference 
[1]  C. P. Pearman, 
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Maki Tachikawa*, Azusa Muraoka, Hidenori Suzuki, and Yoshiki Matsuzaki

 

Supercooled water exhibits unique physical properties such as a negative thermal expansion and the ther-
modynamic singularity around -45 °C.  Although it is generally accepted that hydrogen bonding between water 
molecules is responsible for the properties, their detailed mechanism is not well understood.  We probe thermody-
namic anomalies of liquid water in highly supercooled state by use of optical trapping and Raman spectroscopy.  

Stokes photons are scatterred from water molecules excited by the trapping radiation.  An enthalpy change due to 
-

ing band.  The isobaric heat capacity calculated from the enthalpy data shows an anomalous increase as the tem-
peratures approaches -45 °C, suggesting the existence of the second critical point [1].  

Reference 
[1] P. H. Poole, F. Sciortino, U. Essmann, H. E. Stanley, Nature 360, 324 (1992).
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-
ized [1] and now on low-ionized W ions [2]. In particular, energy levels, radiative transition probabilities, and 
autoionization rates for [Cd] 4 5 5

14 6f p l nl′ , [Cd] 4 5 6
14 6f p l nl′′ , [Cd] 4f  145p55d2nl, [Cd] 4 5 5 6

14 5f p d l nl′′ , [Cd] 
4f  135p65d 2nl, and [Cd] 4 5 5 6

13 6f p d l nl′′  ( ′ = , ,l d f g , ′′ = , ,l s p d , l = s – g, and n = 5 – 7) states of Yb-like tungsten 
(W4+) are calculated and compared using the relativistic many-body perturbation theory method (RMBPT code), 

Hartree-Fock-Relativistic method (COWAN code). It allows to critically evaluate recommended atomic data for 
their accuracy. Synthetic dielectronic satellite spectra are simulated in a broad spectral range from 200 to 1400 Å. 
This research was supported by DOE under OFES grant DE-FG02-08ER54951. 
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Through of Path Integral Monte Carlo method (PIMC) we determine the elastic constants of solid 4He in its 
hcp phase. These elastic properties are very important in view of their apparent involvement in the phenomenon 
of supersolidity in solid 4

cell containing 180 atoms, followed by measurement of the elements of the corresponding stress tensor. For this 
purpose an appropriate path-integral expression for the stress tensor observable is derived and implemented into the 
PIMC++ package. A comparison of the results to available experimental data shows an overall good agreement of 
the density dependence of the elastic constants, with the single exception of C13.

Reference 
[1] Luis Aldemar Peña Ardila, Silvio A. Vitiello, and Maurice de Koning, “ Elastic Constants of hcp 4

Carlo Vs. Experiment”, Phys. Rev. B 84, 094119 (2011) [6 pages].
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We observed the two-dimensional skyrmion excitations and its time-dependent phenomenon in quasi-2D polar 
Bose-Einstein condensate of F=1 23Na atoms, where 2D skyrmion is topologically protected. [1] Spin rotation 
method was used to imprint skyrmion spin textures on the condensate. The skyrmion was stable about tens of ms, 
but decayed to a uniform spin texture after all. The collapse of the skyrmion indicates that the polar phase inside the 

Reference 
[1] J. Choi, W. J. Kwon and Y. Shin, Physical Review Letters 108, 035301(2012). 
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One of the most remarkable characteristics of a Bose–Einstein condensate is that it responds to rotation by 
forming quantized vortices. In this theoretical work, we investigate vortex lattices in a rotating two-component 
condensate in which the components have unequal atomic masses and interact attractively with each other [1]. We 

the system exhibits unconventional ground-state vortex structures in a harmonic trap, such as lattices having a 
square geometry or consisting of two-quantum vortices. The exotic lattices can be understood in terms of the Feyn-
man relation, which states that the vortex density is proportionalto the atomic mass, and they should be realizable 
with current experimental techniques.

Reference 
[1]  P. Kuopanportti, J. A. M. Huhtamäki, and M. Möttönen, Phys. Rev. A 85, 043613 (2012). 
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In this work we investigate the dynamics of a system constituted by Bose-Einsten condensate in three well in 
line [1, 2]. This system presents among its collectives modes, a behavior of two-mode called twin mode [3, 4].The 

the interaction parameters. 
We used the semi-classical Hamiltonian form obtained by three modes through the coherent state transforma-

tion based in the su(3) algebra [5]. We analyzed a way to obtain a hamiltonian semi-classical two-mode [6] by 
canonical transformation from semi-classical three-mode model. 
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44 175301 (2011).
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The properties of quantum gases beyond the usual dilute limit have been one of the most challenging topics in 

on Bose gases near resonance or at large scattering lengths. We show that 3D Bose gases near resonance are nearly 
fermionized, analogous to one-dimensional Tonks-Girardeau gases of hardcore bosons. Furthermore, beyond the 
Lee-Huang-Yang dilute limit, the chemical potential reaches a maximum when approaching the resonance from 
the molecule side and an onset instability sets in at a positive critical scattering length. We attribute this peculiar 
property to the sign change of the effective interactions due to a many-body renormalization effect.  The effect of 

Reference 
[1] D. Borzov, M. Mashayekhi, S. Z. Zhang, J. L. Song and F. Zhou, Phys. Rev. A85, 023620 (2012).
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S.-W. Su1,*, I.-K. Liu2, Y.-C. Tsai3, W. M. Liu4, and S.-C. Gou2

 
 

 
 

The non-equilibrium dynamics of a rapidly quenched spin-1 Bose gas with spin-orbit coupling [1] is studied. 
By solving the stochastic projected Gross-Pitaevskii equation, we show that crystallization of merons can occur in 
a spinor condensate of 87Rb. The stability of such a crystal structure is analyzed. Likewise, inverted merons can 
be created in a spin-polarized spinor condensate of 23Na. Our studies provide a chance to explore the fundamental 
properties of meron-like matter. 

Reference
[1]  Y.-J. Lin, K. Jimenez-Garcia and I. B. Spielman, , Nature 471, pp. 83-86 (2011). 
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Bose-Einstein condensates of 85Rb are produced by direct evaporation in a crossed optical dipole trap [1]. The 

evaporation in the vicinity of the 155 G Feshbach resonance. 
The tunable nature of the atomic interactions in 85Rb makes it possible to initiate a collapse of the condensate 

which can, in the right trapping geometry, result in the creation of bright matter-wave solitons. These self-stabiliz-
ing wave packets arewell localized due to attractive atomic interactions and hence show great potential as surface 
probes for the study of short-range atom-surface interactions [2]. In light of recent theoretical interest, there is also 
much scope for the study of binary soliton collisions and the scattering of solitons from barriers with a view to 
developing interferometry schemes. 
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(2012). 
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-
-

place in the phonon regime of very low temperatures. In dilute quantum gases, it occurs at all temperatures below 
Tc. The increase in quantum degeneracy reachable through the adiabatic displacement of the wall separating the two 
compartments is also discussed. 

Reference 
[1]  D. J. Papoular, G. Ferrari, L. P. Pitaevskii, S. Stringari, , in 

preparation (2012). 
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Angela White*, Carlo Barenghi, and Nick Proukakis

 

We extend available methods for creating vortices in 2D atomic Bose-Einstein condensates by demonstrating 
that a moving obstacle, in the form of an elongated paddle, can be used to stir a condensate in two quite different 
ways, to create clusters of like-signed vortices, or induce vortices that are dispersed. We introduce new statistical 
measures of clustering based on Ripley’s K-function and nearest neighbor techniques which are suitable to the 
small size and number of vortices in atomic condensates. These measures are applied to analyze the evolution and 
decay of clustering. The theoretical techniques we present are accessible to experimentalists and extend the current 
methods of inducing 2D quantum turbulence in Bose-Einstein condensates. 

Bose gases Tu-054

Justin Lovegrove*, Janne Ruostekoski, and Magnus O. Borgh
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We have numerically minimised the free energy of a rotating, spin-1 BEC in 3 dimensions to determine the 
structure of the core of a singular, singly-quantised vortex. For the polar state, the vortex splits into two half-quan-
tum vortices, each with a ferromagnetic core. In the ferromagnetic state, a hybrid spin disgyration and phase vortex 

previously the nature of these core structures has not been understood. We also report on the stability of these vor-
tices for varying spin-dependent scattering lengths, rotation frequencies, linear and quadratic Zeeman splittings in 
isotropic or strongly oblate harmonic traps. 

References 
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to explain the main features of the snake instability [1]. We predict the number of vortex-anti-vortex pairs produced 

onset of the snake instability compared to e.g. a cylindrical trap of similar size. 
We also investigate the connection between imaginary Bogoliubov modes and the snake instability using the 

exact soliton-like dark ring solution of the radial Gross-Pitaevskii equation [2]. There exists only a single imaginary 
eigenvalue, and we show it corresponds to the snake instability. 

References 
[1]  L. A. Toikka, K-A. Suominen , 

manuscript in preparation. 
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High resolution optical access (< 1 µm) to ultracold atoms offers new capabilities and insights into applications 
where single-site resolution and control of optical lattices is warranted [1, 2].  Using ColdQuanta’s GlasSi™ atom 
chips, we have demonstrated high-resolution imaging and optical control in a vacuum system small enough to be 

Using these chips, 87Rb BECs were produced within 100 µm of a window in the atom chip.   Using high numerical 
aperture (NA) optics placed outside of the vacuum system and within 1 mm of the atoms, we obtained resolutions 
of 2.5 µm, which is within a factor of 4 for the NA of 0.6 and imaging wavelength of 780 nm.  Using the optics in 
reverse, optical potentials can be projected onto the atoms with the same high resolutions.  As an example, we show 
images of a BEC sliced into multiple pieces by a blue-detuned laser.
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quantum state. 

trap. We identify two important branches of the spectrum related to external and internal surface modes that lead to 

-
ously, which cannot be explained by invoking the average speed of sound. 
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Chris Carson, Mateusz E. Zawadzki, Erling Riis, and Aidan S. Arnold

We use magnetic levitation and a variable-separation dual optical plug to obtain clear spatial interference be-
tween two condensates axially separated by up to 0.25mm – the largest separation observed with this kind of in-
terferometer. Clear planar fringes are observed using standard (i.e. non-tomographic) resonant absorption imaging. 
The ‘magnifying’ effect of a weak inverted parabola potential on fringe separation is observed and agrees well 

theoretical limit due to pixellation of the sinusoidal fringes on our CCD camera. 

Reference 
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The seminal experiments of Hanbury Brown and Twiss on the measurement of photon correlations have been 
pivotal to the advancement of quantum optics. Drawing on the analogy between photons and atoms, similar meth-
ods have recently been developed for matter waves sources. Relying on the single atom sensitivity of a novel 

transition to Bose-Einstein condensation [1]. We are able to observe the gradual establishment of long range order 
while still being sensitive to the residual thermal excitations in the system. Moreover, we observe an anticorrelation 
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The quantum dynamics of interacting particles has recently attracted much interest associated with the ques-
tion of “equilibration” and “thermalization” of isolated systems. In Ref. [1] the exact relaxation dynamics of a 
localized many-body state in the 1D Bose gas has been shown explicitly through the Bethe-ansatz method. Here, 

Gross-Pitaevskii equation. In our study, we calculate the dynamics of a quantum soliton exactly and observe the 

recurrence phenomenon for a small number of particles. In this presentation, we report the result of the dependence 
of the recurrence time on the number of particles and the interaction strength.  

Reference 
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In recent work, we have observed Bose-Einstein condensation of a two-dimensional photon gas in an optical 
microcavity [1]. Here, the transversal motional degrees of freedom of the photons are thermally coupled to the cav-

bath and a particle reservoir. Due to particle exchange between photon gas and molecular reservoir, grandcanonical 
experimental conditions are expected to be realized in this system – unlike in the presently available atomic BEC 

-
trophe) is theoretically expected [2]. I will give an update on the current status of our theoretical and experimental 
work. 
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Following the successful description of atom chip experiments [1], the stochastic Gross-Pitaevskii equation 
(SGPE) is shown to give an excellent ab initio -
al Bose gases, accurately reproducing the experiment of Hung et al. [2]. This is achieved by addressing a common 

The excellent agreement between theory and experiment shown here at equilibrium forms an important basis for 
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By rotating a collection of ultracold bosons in an asymmetric trapping potential at just the right frequency, it 
is possible to induce a quantum phase transition between two macroscopically distinct states. A recent theoretical 
study [1] has shown that for weakly interacting systems the critical frequency at which this occurs can be predicted 
accurately by considering only the lowest Landau level (LLL) and that the resulting state is highly entangled. We 
consider a more detailed calculation and show the surprising result that, although the LLL approximation predicts 
the frequency well, it is a very poor predictor of both the quantum Fisher information and the precise form of the 
entangled state.  This issues a warning about relying on this approximation for certain applications. Our more 
detailed calculation reveals a rich system for engineering a range of interesting entangled states with potential ap-
plications to quantum metrology. 
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Applying quantum kinetic theory to a dilute Bose gas held between two thermal reservoirs at different tempera-
tures, we identify the same phenomena in the collisionless Bogoliubov regime of a Bose-condensed gas [1]. The 
emergence of internal convection as an environmentally induced coherent effect requires a long quasi-particle life-
time within the thermal reservoirs, and its analysis needs explicit treatment of non-resonant master equation terms. 
Our results for the energy and particle currents suggest that internal convection should be directly observable in 
currently feasible experiments on trapped ultracold vapors. 
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We study the existence and stability of self-organized periodic soliton solutions in the quasi-one-dimensional 
homogeneous system, but with a long-ranged interaction. The imposed period condition induces oscillatory un-
stable modes when the degree of long-ranged interaction is small; while the system involves into a quasi-linear 
and stable one when the long-ranged interaction is large. In terms of Jacobian elliptic functions, parameter space to 
support stable period soliton patterns would be illustrated. 
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Based on our experience with single-atom detection using integrated micro-optics [1] we build a new experi-

interatomic correlations at shot noise limit. In combination with standard imaging techniques we can compare the 
macroscopic properties of Bose-Einstein condensates with the coherence properties of its constituents. Using the 

3D condensates and quasicondensates both in equilibrium as well as in a controlled 1D expansion, thus entering the 
regime of non-equilibrium dynamics. 

As a second project we are going to combine magnetic chip traps with photonic structures, namely tapered 
-

abling us to study EIT, light storage and polariton gases in a quasi 1D geometry. 
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systems with spin [1,2]. Atoms with arbitrary Zeeman structure can be trapped by far-detuned optical traps. In our 
group, we construct an all-optical setup in order to study spin 1 condensates in sodium gases. We achieved to reach 
Bose-Einstein condensation regime by MOT pre-cooling and two-stages evaporative cooling, with about 5000 at-

works for us. 
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energy is dissipated. As a result the distribution of occupation numbers of excitations follows a power law with a 

Single-particle momentum spectra for a dynamically evolving Bose gas are analysed using semi-classical simula-

possible universal scaling behaviour. The connection of this scaling with the appearance of topological excitations 
such as solitons and vortices is discussed. For the one-dimensional case, a random-soliton model provides analyti-

discussed. The results open a view on solitary wave dynamics from the point of view of critical phenomena far from 

without the necessity of detecting solitons and vortices in situ. 
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We report on the rapid formation of Rubidium Bose-Einstein Condensates (BEC) in a dipole trap. The experiment 

dipole beams, each with 8 W of power, are tightly focused and are overlapped with the MOT. The laser-cooled atoms 
are directly loaded into the dipole trap and are forced to evaporate till the formation of BEC. Tuning the crossing an-
gle of the two single-focused beams allows us to greatly tune the longitudinal trap frequency, as well as the effective 

 
We will report the study details and future direction of this experiment.
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[1] Barrett, M. D., Sauer, J. A. & Chapman, M. S. All-optical formation of an atomic Bose-Einstein condensate. Phys. Rev. Lett. 

87, 010404 (2001).
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Quantum degenerate Fermi gases and Bose-Einstein condensates give access to a vast new class of quantum 
states. The resulting multi-particle correlations place extreme demands on the detection schemes. Here we intro-
duce diffractive dark-ground imaging as a novel ultra-sensitive imaging technique [1]. Using moderate detection 
optics, we image clouds with less than ten atoms with near-atom shot-noise-limited signal-to-noise ratio. This is an 
improvement of more than one order of magnitude comparedto our standard absorption imaging. We also analyse 
the mechanical effects of the probe beam onto the atoms. We show that the resulting Doppler shift has to be taken 
into account even for moderate saturation intensities (s = 0.1) and exposure times (100 s). 
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g ( ) ( )2 r r, ′ , which for ideal and weakly interacting gases typically ranges from values g ( ) ( )2 2r r, ≈  at zero sepa-
ration, to a value of 1 at large separations | − ′ |r r . Here we show that nonlocal density-density anticorrelations 
g ( ) ( )2 1r r, ′ < -

-
tion. We also discuss how interactions in elongated and quasi-one-dimensional interacting Bose gases suppress the 
density anticorrelations in position space, but amplify the corresponding anticorrelations in momentum space, and 
compare our theoretical predictions with the results of recent experiments [3]. 

References 
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[2]  V. V. Kocharovsky et al., Adv. At. Mol. Opt. Phys. 53, 291 (2006). 
[3]  A. Perrin et al., Nat. Phys. 8, 195 (2012). 
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-
graphically generated Laguerre-Gauss(LG) beam is used to both trap and rotate a condensate of Rb87 atoms. The at-
oms are rotated via a two-photon Raman process using the trapping LG beam with a Gaussian beam to impart a well 

. Supercurrent corresponding to a giant vortex with 
topological charge up to q = 15 is phase imprinted optically and detected both interferometrically and kinematically. 

phase slips, correspond to collective jumps of atoms between discrete q values. Current work is focused on super-

Reference 
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We perform a theoretical study of cold atoms interacting with static and vibrating carbon nanotubes. We con-

condensate is used. Atom loss from the condensate is shown to be highly non-trivial, but provided atomic interac-
tion effects and quantum pressure are included in the description , our simulations describe experiments [1] well. 
Finally, we study a vibrating nanotube in a condensate and show that vibration frequencies typical to nanoscaled 

heat the cloud. 

Reference 
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Nano. 6, 446 (2011). 
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We propose a realistic experiment to demonstrate a dynamic Kosterlitz-Thouless transition in ultra-cold atomic 
gases in two dimensions. With a numerical implementation of the Truncated Wigner Approximation we simulate 
the time evolution of several correlation functions, which can be measured via matter wave interference. We dem-
onstrate that the relaxational dynamics is well-described by a real-time renormalization group approach, and argue 
that these experiments can guide the development of a theoretical framework for the understanding of critical 
dynamics.

This poster is based on Ref. [1]. 

Reference 
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We investigate the heat capacity of a Bose-Einstein Condensate (BEC) following the suggestions by Blakie 
et al. [1]. We start with a BEC of 87Rb atoms, close to zero temperature, trapped in the intersection of two focused 
CO2 laser beams. The trap is turned off for times in the order of a millisecond, during which it expands ballistically 
and falls under gravity. The atoms are then recaptured, and the atoms are allowed to reach thermal equilibrium. 

-
surements, varying the interaction strength by the trap depth, as well as the energy transferred by the drop time. 
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traps, using hundreds of pictures and carefully analysing the statistics of atom number in the imaging pixels. Pre-

third moment were measured and the transition from the ideal gas to the quasicondensate regime was mapped out 

quasicondensate regime, and the regime of strong interactions was approached [2]. Here, at record low tempera-
tures, using a non-local analysis at variable observation length, we observe a clear discrepancy with a classical 

breaks down [3]. 
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Spinor gases present a rich physics due to the interplay between internal and external degrees of freedom. We 

stable spin-1 condensates inthe Zeeman m = 0 state, and study the thermal population of m = 1 via spin-changing 
collisions. Interestingly, these collisions are typically characterized by a very low energy, and as a consequence, for 

We then analyze dynamically stable Chromium F = 3 condensates in m = 3, where magnetic dipolar interactions 
introduce spin relaxation, which leads not only to a very temperature-sensitive population of m = 2, but also to a 
non-trivial angular dependence of the activated m = 2 atoms. The discussed thermal effects may be employed for 
thermometry at very low temperatures. 

References 
[1]  L. Santos and T. Pfau, , Phys. Rev. Lett. 96, 190404 (2006). 
[2]  T. Lahaye, C. Menotti, L. Santos, M. Lewenstein and T. Pfau, The physics of dipolar bosonic quantum gases, Rep. Prog. Phys. 

72, 126401 (2009). 
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We experimentally investigate the instability and collapse dynamics of a dipolar Bose-Einstein condensate 
(dBEC) in a 1D optical lattice. In contrast to the usual method relying on a change in the interaction strength, the 

strength constant. Only a dBEC offers this possibility, since its stability depends on the lattice depth due to the 
anisotropic dipole-dipole interaction [1]. We consider a 52

in a trap created by a shallow optical lattice superimposed to a crossed optical dipole trap. We show that its instabil-
ity can be induced in-trap by decreasing the lattice depth below a critical value. We also show that a dBEC initially 

is a unique feature of dipolar systems in optical lattices.
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experiments focus on 168Er, which is a highly magnetic atom of the lanthanide series. Because of its large magnetic 
moment of 7 , with  the Bohr magneton, and a non-S electronic ground state, Er features very strong anisotropic 
interactions, which are not accessible with alkali atoms. It has recently been predicted that Feshbach resonances 
in lanthanide atoms, as Er and Dy, are induced by the strong anisotropy of the dispersion interaction and magnetic 

Reference 
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Ultracold quantum gases can serve as bench mark systems for strongly interacting manybody physics [1]. 
Conventional alkali atomic systems at ultra low temperatures exhibit interaction potentials that have essentially 
zero range. If long range interaction can be introduced, many intriguing effects and new quantum phases will be 
accessible. Examples are real space long range (crystalline) order for bulk systems, supersolids and fractional Mott 
insulators in optical lattices. Two promising candidates for ultra cold particles with tunable long range interaction 
are Rydberg atoms and ground state polar molecules. We are setting up an experiment to create ultracold NaK 
molecules. In this system instability due to inelastic two body collisions known from pioneering experiments [2] is 
absent and chances are good to reach far into the interesting parameter space.
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Dipolar quantum gas systems at ultralow temperatures are expected to exhibit novel many-body quantum phas-
es as a result of the long-range and anisotropic dipole-dipole interaction. The present work focuses on the creation 

condensates (BEC) of Rb and Cs atoms [1]. After overlapping the BECs we produce weakly bound RbCs molecules 
[2] using the Feshbach-association technique. We transfer the molecules into the rovibrational ground state[3] with 

transfer in the presence of an optical lattice. 
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Ultracold polar molecules in the quantum degenerate regime open the possibility of realizing strongly corre-
lated quantum systems with long-range and spatially anisotropic interactions. Although KRb is observed to undergo 
bi-molecular chemical reactions at ultralow temperatures [1], the anisotropy of the dipole-dipole interaction can be 
exploited to suppress these chemical reactions by trapping the molecules in a one-dimensional optical lattice [2]. 
In this reduced 2D geometry, the repulsive dipole-dipole interaction further enhances the p-wave barrier between 
two indistinguishable fermionic molecules, drastically reducing the chemical reaction rate.  We now demonstrate 
evaporative cooling of KRb in this reduced geometry.   Although s-wave scattering is forbidden by quantum statis-
tics and the rethermalization rate from p-wave collisions is negligible, the molecules rethermalize via long range 
dipole-dipole interactions.  The observed increase in phase space density is an important step towards the explora-
tion of collective quantum effects in an ultracold gas of molecules.
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Most researches on quantum degenerate gases in optical lattices so far have considered only short-ranged, 
isotropic, and Van der Waals type interactions of alkali atoms. However, recent experimental realizations [1, 2] of 
almost pure dipolar gases of dysprosium-161 and erbium-168 offer fascinating opportunities to study how long-
ranged, anisotropic, and dipole-dipole interactions modify the properties of trapped quantum gases of bosons and 
fermions. We have investigated collective excitation of dipolar bosons trapped in a 2D optical lattice using numeri-
cal simulations for different trap geometries. It is found that anisotropic trap has great impact on the collective 
mode shift. As the number of atoms decreases, our result demonstratesdisagreement with the one predicted in the 
Thomas-Fermi limit. 
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Multi-component fermion systems give rise to many intriguing physical phenomena, such as baryon formation 
40K atoms in 

are in very good agreement with numerical calculations including all scattering channels. Allowing for tunneling in 
one direction, we observe a damping of the coherent oscillations. We attribute this to a melting of the initial band 
insulator, induced by spin-changing collisions which open additional spin channels.
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Precise understanding of strongly interacting fermions, from electrons in modern materials to nuclear matter, 

-
grammatic Monte Carlo (BDMC), combining a Monte Carlo process capable of sampling billions of diagrams, bold 

-
pute the equation of state of the unitary gas in the normal unpolarised phase. We cross-validate the results with new 
precision experiments on ultra-cold 6Li atoms at the broad Feshbach resonance. Excellent agreement demonstrates 
that a series of Feynman diagrams can be controllably resummed in a non-perturbative regime using BDMC. This 
opens the door to the solution of challenging problems across many areas of physics. 
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gas with spin-orbit coupling and across a BCS-BEC crossover. Due to the competition between polarization, pair-

approach that guarantees the ground-state solution, we systematically study the structure of the phase separation 

-
onstrate that the existence of the phase leaves a unique signature in the trap integrated momentum space density 
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Two-component Fermi gases near Feshbach resonances exhibit universal properties and provide a well con-
trolled setting to explore many-body phenomena in highly correlated quantum systems. Probing dynamic response 
functions, such as the dynamic spin susceptibility, can reveal new universal aspects in the dynamics of these sys-

6Li Fermi gas in 
the two ground states using Bragg spectroscopy. By appropriate choice of the Bragg laser detuning either the spin 
or the density response can be measured independently. This allows full characterisation of the spin-parallel and 
spin-antiparallel components of the dynamic S(k, ) and static S(k) structure factors. At high momentum transfer k, 
the spin response is suppressed at low energies due to pairing and displays a universal high frequency tail, decaying 
as , where  is the probe energy [1,2]. 
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state in the Fermi-Fermi mixtures with distinct ions, 40K and 6Li [1,2]. One of the interesting problems in such a 
mass imbalanced system is how the SF state is realized in the optical lattice. It is known that in the lattice model, 
a density wave (DW) state is stabilized since less mobile fermions tend to crystallize. Therefore, it is necessary to 

realized in the mass imbalanced system [4]. The low-temperature phase diagram is then determined. 
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dimensional channel connecting macroscopic, incoherent reservoirs. An atomic current is induced by creating an 
imbalance in the particle number of the two reservoirs. Combining the measurement of the current with the high-
resolution in-situ measurement of the density in the channel, we observe the drop of chemical potential due to the 
contact resistance which develops at the contacts between the ballistic channel and the reservoirs [1]. 

channel region and study the current as a function of the chemical potential. For a strongly interacting Fermi gas we 

of disorder for weakly and strongly interacting Fermi gases. 
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The dynamics of a single impurity in an environment is a fundamental question in many-body physics. A spin-
up impurity dressed by a bath of spin-down particles, constitutes the Fermi polaron problem. This is the extreme, 

imbalance for attractive interactions and Stoners itinerant ferromagnetism for repulsive interactions. We create 
and investigate Fermi polarons in two dimensions and measure their spectral function using momentum-resolved 

between polarons and tightly bound dimers, which provides insight into the elementary pairing mechanism of im-
balanced, strongly-coupled two-dimensional Fermi gases. Additionally, for repulsive interactions we study novel 
quasiparticles, repulsive polarons, whose lifetime determine the possibility of stabilizing repulsively interacting 
Fermi systems [2]. 
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-
conducting systems with strong correlations. Recently, triangular optical lattices have been realized in order to 

out the stability phase diagram. 
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Experiments performed on ultracold 6Li atoms have measured the equation of state with great accuraccy [1]. 
b3 and b4 have been extracted. In this work, we have calcu-

b3 in the whole BEC-BCS crossover. Our approach 
is analytic, and we get closed expressions for b3 in terms of the 3 – body T-matrix. We recover in this way the 
experimental result of Ref.[1] in the unitary limit. Our results for b3 are also in excellent agreement in the whole 
BEC-BCS crossover with a previous theoretical work [3] using a totally different approach. 
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spin and down-spin particles and the spin excitation has a gap, which is attributed to the appearance of fermionic 

to normal states with spin currents. We analyze cases of Fermi-Hubbard and Yang-Gaudin models, and show how 
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-
tions to arbitrary dimension and then use it to obtain a set of universal relations for the Fermi gas, which serve as 

we are then able to show that, under very general conditions, effective reduced-dimensional scattering lengths due 

need to solve the associated multichannel scattering problem. Finally, we show that reduced-dimensional contacts 
— related to the tails of the momentum distributions — are related to the actual three-dimensional contact through 
a correction factor of purely geometric origin. 
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Mixtures of bosonic and fermionic quantum gases can form ideal model systems to study intriguing quantum 
phenomena. Polaron and molecule physics as well as exotic many-body quantum phases become accessible when 
appropriate Feshbach resonances are available to freely tune the interactions between bosons and fermions. We 
have created a new quantum degenerate Bose-Fermi mixture of bosonic 23Na and fermionic 40K. We demonstrated 
that this mixture offers widely tunable interactions via broad interspecies Feshbach resonances [1]. Over thirty reso-

spectroscopy in the vicinity of that resonance has allowed us to create ultracold fermionic Feshbach molecules 
with lifetimes of up to100 ms. Our work opens up the prospect to create chemically stable, fermionic ground state 
molecules of 23Na-40K. Due to a large permanent electric dipole moment of 2.72 Debye long-range dipolar interac-
tions will be strong and set the dominant energy scale in many-body systems of fermionic 23Na-40K ground state 
molecules. 
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Atoms trapped in optical lattices have been used successfully to study many-body phenomena. However, the 
shape that bosonic ground-state wavefunctions can take is limited, apparently compromising the usefulness of this 

-
ized in higher Bloch bands, where orbital degrees of freedom are essential, can bring the world of optical lattices 
closer to relevant condensed matter systems. We discuss our observations of extremely long coherence times, chiral 
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We experimentally study the scattering of guided matter waves on a time-dependent amplitude optical lattice. 
We observe different types of frequency-dependent dips in the asymptotic output density distribution. Their posi-
tions are compared quantitativelywith numerical simulations. A semiclassical model that combines local Floquet-
Bloch bands analysis and Landau-Zener transition provides a simple picture of the observed phenomena in terms 

-
onstrate the use of this technique with a bichromatic amplitude modulation to design a tunable sub-recoil velocity 
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Magnetic lattices based on periodic arrays of permanent magnetic microstructures [1] provide a promising 
complementary tool to optical lattices and have certain distinguishing features including the potential to tailor ge-
ometries of arbitrary shape, to perform in-situ RF evaporative cooling and RF spectroscopy, and to produce highly 
stable potentials. Here, we report on the trapping and cooling of 87Rb F=1 atoms in a 1D 10 µm-period magnetic 
lattice. Typically 3×105 atoms are loaded into the magnetic lattice with trap lifetimes of ~ 10 s and evaporatively 
cooled to 1-2 mK, which is close to the BEC transition temperature. Using in situ absorption imaging the clouds of 
ultracold atoms can be optically resolved in the individual magnetic lattice sites. Potential applications of micron-
period magnetic lattices with honeycomb or triangular lattices to simulate condensed matter systems will be pre-
sented.
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states. It has been suggested that a spin-dependent optical lattice can provide the tunability necessary to realize 
the Heisenberg Hamiltonian which can give rise to ferromagnetic and antiferromagnetic states [1]. Such a spin-
dependent optical lattice can be realized by tuning the laser wavelength close to the D1 and D2 lines of the alkali 
atoms [2]. We have implemented such a lattice to realize the ability to control the interspin interaction energy for a 

87Rb in a three-dimensional optical lattice. In particular, we have studied 
-

terspin interaction energy with the spin-dependent optical lattice. 
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Stimulated by recent experiments with ultracold in bichromatic lattices [1], we investigate the evolution of 
initially localized wave packets in two quasiperiodic models, namely a discrete nonlinear Schrödinger equation and 
a quartic Klein Gordon lattice. In the regime where, in the absence of nonlinearity, all eigenstates are exponentially 
localized, we show that the inclusion of a nonlinear term induces a destruction of localization resulting in a subdif-
fusive spreading. We interpret this delocalization on the basis of mode-mode resonances. Two spreading regimes of 

underlying linear system. For large enough nonlinearity, a wave packet undergoes self-trapping, as in purely ran-

can also occur at weaker nonlinearity due to the existence mini-gaps in the spectrum. 

Reference 
[1]  E. Lucioni, B. Deissler, L. Tanzi, G. Roati, M. Zaccanti, M. Modugno, M. Larcher, F. Dalfovo, M. Inguscio, and G. Modugno, 

Phys. Rev. Lett. 106, 230403 (2011). 



Optical lattices Tu-101 219

tunable optical lattice

Daniel Greif1,*, Leticia Tarruell1,2, Thomas Uehlinger1, Gregor Jotzu1, and Tilman Esslinger1

 
 

*greif@phys.ethz.ch 

We report on the creation of Dirac points with adjustable properties in a tunable honeycomb optical lattice. 
Using momentum-resolved interband transitions, we observe a minimum band gap inside the Brillouin zone at the 
position of the Dirac points. We exploit the unique tunability of our lattice potential to adjust the effective mass 
of the Dirac fermions by breaking the inversion symmetry of the lattice. Changing the lattice anisotropy allows 
us to move the position of the Dirac points inside the Brillouin zone. When increasing the anisotropy beyond a 

excellent agreement with ab initio calculations. Our results not only pave the way for using cold atoms to model 
materials where the topology of the band structure plays a crucial role, but also provide the possibility to explore 
many-body phases resulting from the interplay of complex lattice geometries with interactions. 
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We investigate highly excited Rydberg atoms in optical-lattice traps. The potential experienced by a Rydberg 
atom in an optical lattice is given by the spatial average of the free-electron ponderomotive energy due to the laser 

on the angular portion of the atomic wavefunction. Experimentally, the angular dependence of the potential is dem-
onstrated using various (j, mj) levels of 85

j, mj) levels and 
compare them to theoretical results. The tunability of Rydberg-atom trapping potentials using the angular degrees 
of freedom will be important for applications of Rydberg-atom optical lattices. 
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The tripod scheme implies that the coupling and probe resonant beams are applied in a two-dimensional ge-
ometry [4]. This geometry is particularly appealing as it allows us to study the effect of the phase difference be-
tween two standing waves on the diffraction pattern. In this contribution we study the electromagnetically induced 

-
malism. Thus, our model is based on solving Liouville equations self-consistently with Maxwell equations. Wave 

how one can totally suppress diffraction in a desirable diffraction order, or oppositely, amplify a given diffraction 
-

tion, as expected. 
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Disordered Bose systems with strong correlation, described by Bose Hubbard models with disorder, have been 
one of the targets of theoretical and experimental investigation. Current interest is also directed towards disordered 
systems of ultracold atoms generated by using laser speckle patterns or additional incommensurate optical lattice 
potentials. Fallani et al. [1] observed a localization transition of strongly interacting 87Rb bosons in incommensurate 
lattices, which suggested the formation of a Bose glass. 

We numerically studied the localization property of Bose-Fermi mixture systems on one-dimensional incom-

fermions are in different phases, especially when fermions are localized and bosons are delocalized. Using quantum 
monte carlo simulation we found new localized or delocalized phases which are formed by bose-fermi interactions 
and are dependent of the ratio of the density of bosons to that of fermions. We propose a mechanism of these phe-
nomena, showing the visibility of momentum space, the density distributions and the tructure factors. 
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Atomic quantum gases in optical lattices allow for fundamental studies of strongly-correlated many-body sys-
tems. We have recently studied transport and excitation effects in 1D atomic mixtures (derived from a BEC) in 

the critical lattice depth for the breakdown of transport, in contrast to the case of quasi-disorder from an incommen-
surate optical lattice, where no such shift is seen. In a second experiment [2] we explored the scattering of atomic de 
Broglie waves to detect spatial structure in a lattice-modulated 1D Bose gas, as well as the suppression of inelastic 
scattering in the band structure. Matter-wave Bragg diffraction is a powerful technique to non-destructively probe 
long-range order, such as in spin mixtures, and its tunability precludes limitations on spatial resolution. 
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We use the Schwinger-Keldysh technique to study the real-time dynamics of the Bose-Hubbard model, allow-

experiments involving cold atoms in traps and point out that equilibration is impeded when the average number of 
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171

information processing will be thus implemented with a 2D quantum gas microscope [1] using the 171Yb atoms. Using 
n which is the re-

fractive index of the SIL. The brightness of the microscope can also be improved by factor of n2. Here we constructed a 
high-resolution microscope consisting of both a glass-corrected objective lens (N.A.=0.42) and the SIL, and evaluated its 
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We investigate laser spectra of bosonic 174Yb atoms in a three dimensional optical lattice both theoretically and experi-
mentally. With the aid of a ultra-narrow optical transition of the Yb atoms [1], high-resolution spectra are systematically 

of the bosonic Hubbard model with the ab initio manner; then, analyze this model based on the Gutzwiller approximation 

-
-

peratures and lattice depths. By comparing the numerical results with the measured spectra, we discuss phase transitions 
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Realizations of the Bose-Fermi Hubbard model in an optical lattice have been demonstrated by S. Sugawa, 
et al. [1]. Encouraged by these experiments, we have investigated correlation effects in a mixture of interacting 
bosons and polarized fermions [2]. We show that novel correlation effects inherent in the mixture system appear 

single-particle excitation spectrum for the fermions in metal, insulator, and supersolid phases. We also address how 
the effects appear in a mixture of bosons and two-component fermions. 
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Neutral strontium is an interesting candidate for the realization of an optical clock using a magic-wavelength 
optical lattice to store the atoms. I this poster, we will report on our work towards the development of an optical 

1S0- 1P1 transition at 461 nm. It was demonstrated, that the number of strontium 
atoms were substantially increased using the 679 nm and 496 nm repamping diode lasers. The Sr –MOT is opera-

are discussed. 
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So far we have demonstrated a shift register, atom number squeezing close to quantum degeneracy [2], and spatially 
resolved, coherent excitation of Rydberg atoms [3]. A recently installed next-generation chip facilitates the continu-
ation of our experiments at trap separations of 10 µm. Also our improved imaging setup is presented. We aim to 
measure Rydberg-Rydberg Interactions between different microclouds to make quantum gates. Scaling down even 
further, we propose to aim for mesoscopic ensemble qubits in a 5 µm lattice, and for direct quantum simulators 
using sub-optical lattices of 100 nm period [4]. 
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We study emission and absorption of single photons by a single atom as the fundamental processes in quantum 
information technology. We observe the absorption of single resonant photons from an 854 nm SPDC photon pair 
source by a single Ca+ ion, heralded by the detection of the partner photon. Photon absorption induces a quantum 
jump in the ion in coincidence with the arrival of the partner photon [1]. Moreover, we prepare the ion as a polariza-
tion-selective absorber with adjustable basis, and show that the heralded absorption reveals the entanglement of the 
photon pairs; this is a prerequisite of photon-to-atom entanglement transfer [2]. We also generate resonant single 
854 nm photons by controlled emission from a single ion into a single optical mode at ~ 3000 s-1 rate. We currently 
investigate the transmission of these photons and their resonant absorption in a second ion at 1 m distance, enabling 
distant entanglement between the ions [3].  

References 
[1] N. Piro et al.
[2] J. Huwer et al.
[3] S. Ritter et al.



Quantum information Tu-113 225

Amelioration of BB84 Quantum transmission protocol 

based on Blind detection method

Mohammed Abdedaim* and Skander Aris

Department of Electronics, University of Mentouri, Constantine, Algeria 
*m.abdedaim@hotmail.fr

We report on the development of a Quantum Cryptographic Networks for an approach to more secure commu-
nications, including a BB84 protocol and Blind detection method. Information is encoded in quantum bits (qubits), 
intrinsic physical properties, such as polarization of a photon. Quantum physics allows encoding information using 
the correlation between two or more particles. Quantum Key Distribution (QKD) is one of the innovative meth-
ods of information processing that emerged from the properties of «superposition of states» and «entanglement». 
QKD is used before classical information is transmitted over conventional non-secure communication channels 

paper presents a blind detection algorithm for linear mixtures of sources and therefore can be applied to systems 
of mobile communications. However, in our study it is used for coding and decoding quantum transmissions. The 
essential aim of our implementation is to present an example of application for single secure optical communication 
using BB84. We expect future applications of this method in quantum communications such as quantum transmis-
sion satellite to each other or satellite to ground station. Our work is a part of approach study and idea to product 
Quantum Error Correction Algorithm Control in LEO satellite quantum communications that is ongoing under the 
different Space Agency in the world. 
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We analyse how to generate multi-particle Einstein-Podolsky-Rosen (EPR) entanglement [1] between groups 
of atoms in a double-well Bose-Einstein condensate. We consider both the statistics of the ground state and that of 
dynamical evolution, with two internal modes at each well, so that the entanglement can be detected as a reduction 
in the variances of the sums of local Schwinger EPR spin observables [2]. The local nonlinear S-wave scattering 
interaction creates a spin squeezing at each well, while the tunneling introduces an interference that results in an 

numbers that the EPR paradox and steering nonlocality [3] can be realised. Our predictions are based on a full 
quantum solution and, for larger numbers, a truncated Wigner function simulation using a multi-mode model. We 
explain how the strategy can be extended to generate genuine tripartite entanglement among three wells. 
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generation of entangled photon states is based on optical parametric down-conversion. Other way of creating the 
-

uous variables.  The cluster state under consideration can be generated both in gas [1] and in aperiodical nonlinear 
photonic crystals [2]. They are described by the identical interaction Hamiltonian.  We also study   teleportation of 
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Quantum key distribution (QKD) consists of distributing a secret key to two distant parties in an untrusted 
environment controlled by an adversary. Among QKD protocols, those encoding information in the amplitude and 
phase of coherent states provide interesting performances and implementation [1]. However, due to losses or noise 
of the quantum channel, there exist a maximum transmission distance for which the secret key rate drops to zero. 

-
plifying the signal without amplifying the noise, in order to increase the performances of the QKD. We show that 
the maximum distance of transmission can be increased using thisdevice, as well as the maximum tolerable noise. 
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coherence, and which may violate the no-cloning theorem. It is also shown that the wave function collapse during 
observation can be explained with decoherence while pure states shift to mixed states through interaction with 
macroscopic body in mixed states. 

Reference 
[1] Quantum Measurement, Vladimir B. Braginsky and Farid Ya. Khalili, “Quantum measurement” (Cambridge university press 

1992). 

Quantum information Tu-118

M. Piotrowicz, G. Li, K. Maller, S. Zhang, M. Lichtman, and M. Saffman

We have loaded single Cs atoms into a planar array of blue detuned optical traps. The array is created using 
a novel optical beam arrangement that creates an intrinsically 2D array, is phase stable, and suitable for magic 
trapping of ground and Rydberg states [1]. We demonstrate single qubit gates in the array, and show that Rydberg 
excited atoms can be trapped. The array forms the basis for experiments with several atomic qubits and Rydberg 
gates. Work supported by IARPA, ARO, and DARPA. 
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A chain of trapped ion qubits together with Coulomb mediated two-qubit gates is a promising way to construct 
a modest-size quantum register. Quantum logic gates can also be performed between two remote ions using photon-
mediated entanglement [1], which leads to the possibility of connecting two remote chains together to form a larger 
quantum information processor. These two physical mechanisms can be used to realize a quantum computer archi-

Silicon microfabrication technology can be used to design and fabricate scalable surface trap structures. Here, 
we trap a single ytterbium-171 ion in a surface trap made by Sandia National Laboratories [3]. We use an off-

qubit states. Ramsey interferometry demonstrates a coherence time of more than 1.5s. 
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Recently a nonclassicality indicator is introduced which is based on the interference of quantum states in phase 

these nonccassicality indicators for entangled state of two eigenstate of Harmonic oscillator in the Wigner, Husimi 
and Rivier representations. The maximum of nonclassicality indicator is happen for pseudo bell states and the be-
havior of nonclassicality indicators are compared with the entanglement of formation.
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Entanglement between stationary systems at remote locations is a key resource for quantum networks. We 
report on the experimental generation of remote entanglement between a single atom inside an optical cavity 
and a Bose-Einstein condensate (BEC) [1]. To produce this, a single photon is created in the atom-cavity system, 
thereby generating atom-photon entanglement. The photon is transported to the BEC and converted into a collective 
excitation in the BEC, thus establishing matter-matter entanglement. After a variable delay, this entanglement is 

the atom-cavity system. The BEC as a quantum memory is characterized in [2]. 

References 
[1]  M. Lettner, M. Mücke, S. Riedl, C. Vo, C. Hahn, S. Baur, J. Bochmann, S. Ritter, S. Dürr, and G. Rempe, Remote entanglement 

, Phys. Rev. Lett. 106, 210503 (2011). 
[2]  S. Riedl, M. Lettner, C. Vo, S. Baur, G. Rempe, and S. Dürr, 

polarization qubit, Phys. Rev. A 85, 022318 (2012). 

Quantum information Tu-122

Yew Kam Ho*, Yen-Chang Lin, and Chih-Yuan Lin

 

Recently, there have been considerable interests to investigate quantum entanglement in two-electron model 
atoms ([1-3] and references therein). Here we investigate quantum entanglement for the ground and excited states 
of two-electron atomic systems using correlated wave functions. We study the spatial entanglement of such sys-
tems, concentrating on the particle-particle entanglement coming from the continuous spatial degrees of freedom. 
We use two-electron wave functions constructed by employing -spline basis to calculate the linear entropy of the 
reduced density matrix L Tr

A A
= −1 2( ). Here ρ ϕ ϕ

A B AB AB
Tr= ( ) is the one-electron reduced density matrix ob-

tained after tracing the two-electron density matrix over the degrees of freedom of the other electron. For the helium 
atom (Z = 2), we have calculated the linear entropy for the ground state and the 1sns 1S e (n = 2 – 10) excited states. 
Results are compared with other calculations in the literature [1-3].
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Optical interferometer is the basis for precision measurement. We report on an experiment in which we con-

the traditional linear interferometer [1, 2]. The quantum correlation between multiple beams is very important for 
constructing a real quantum network and precision measurement [3]. Thus, we also explored the several possibili-
ties for achieving quantum correlation among multiple beams in such system.
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We present a degenerate adiabatic perturbation theory (DAPT) for quantum systems whose Hamiltoninans 
possess degenerate eigenvalues [1]. Its goal is to solve the time dependent Schrödinger equation, with the zeroth 
order being the quantum adiabatic approximation, in terms of a power series expansion built on a small parameter 

As an application, DAPT leads to the derivation of rigorous conditions for the validity of the adiabatic theorem of 

to the non-Abelian Wilczek-Zee geometric phase [1]. These corrections are relevant to assess the validity of the 
practical implementation of the concept of fractional exchange statistics. We illustrate the formalism by exactly 
solving a time-dependent problem and comparing its solution to the perturbative one and also by studying several 
problems numerically solved. 
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of a single two-level atom, which interacts with pulses propagating in two spatial-modes (odd and even) and fre-
quency-continuum, a setup particularly relevant for applications in integrated quantum optical devices. We discuss 
the single and multi-photon pulse properties maximizing the atomic excitation. We show that the maximum atomic 
excitation probability with multi-photon pulses in the even-mode is a monotonic function of the average photon 
number for coherent state, but not for Fock states. Furthermore, we demonstrate that the atomic dynamics can be 
controlled by the relative phase between the two counter-propagating coherent state pulses incident on the atom.
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Topological properties of physical systems can lead to natural protection against perturbations. In electronic 

effects. Here we demonstrate how various quantum spin Hall Hamiltonians can be simulated with linear optical 
elements using a two dimensional network of coupled optical resonators. Key features of quantum Hall systems, 

We experimentally investigate the implementation of such ideas in silicon-on-insulator technology and their ap-
plication as an optical delay line.  Such systems allow the presence of photonic edge states, which are insensitive to 
disorder, caused by fabrication errors. Furthermore, the addition of an optical non-linearity to our proposed system 
leads to the possibility of implementing a fractional quantum Hall state of photons, where phenomenon such as 
fractional statistics may be observable.
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We report on the observation of a characteristic change in the excitation spectrum of a Bose-Einstein conden-

phase transition. The observed behavior is reminiscent of a roton minimum, as predicted for quantum gases with 
long-range interactions [1]. We create long-range interactions in the BEC using a non-resonant transverse pump 

spectroscopically studied across the phase transition using a variant of Bragg spectroscopy. At the phase transition 
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Simulation methods based on stochastic realizations of state vector evolutions are commonly used tools to solve 
open quantum system dynamics, both in the Markovian and non-Markovian regime. Here, we address the ques-
tion of waiting time distribution (WTD) of quantum jumps for non-Markovian systems. We generalize Markovian 
quantum trajectory methods in the sense of deriving an exact analytical WTD for non-Markovian quantum dynam-
ics and show explicitly how to construct this distribution for certain commonly used quantum optical systems [1]. 
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We present an accurate calculation and discrimination of the electromagnetically induced transparency for 
the 5S –5P –5D  transition of 87Rb atoms. Considering all possible transitions, time–dependent density matrix 

matrix elements were then averaged over the Maxwell-Boltzmann velocity distribution and various transit times. In 
particular, we could discriminate the contribution of one-photon and two-photon resonance effects in the calculated 
spectra. We found that the signals for the 5D (F ″ = 2,3) states were mostly composed of the mixed term, whereas 
the signal for the 5D (F ″ = 4) state was originated from both the pure two-photon resonance term and the mixed 
term [1]. 
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Semiconductor microcavity polaritons offer new opportunities to study the properties of interacting bosons in 
the quantum degenerate regime. Here, we present a novel experimental platform to produce trapped polaritons with 

we observe strong coupling to the cavity as witnessed by an avoided level crossing as a function of cavity detun-
ing. For multiple quantum wells, the system exhibits signatures of polariton lasing observed through pump-power 
dependence, blue-shift and linewidth narrowing at threshold. One particular feature of our setup is the possibility 
to realize high Q
Bose-Einstein condensates with a decay time much longer than the polariton thermalization rate. 
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of neutral 87

state F =1  and apply a weak microwave pulse resonant to the transition F F= → =1 2 , which leads to the 
transfer of a single atom to F = 2  with a probability p = 0.2. We then detect if there is an atom in F = 2  by 
probing the cavity and repeat the sequence if it was not succesful. The use of the cavity allows detection with high 

the entanglement, we havedeveloped a new tomography method that also makes use of the cavity detection and 
allows to measure the Husimi-Q distribution, from which we reconstruct the density matrix of the prepared state. 
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We study, both theoretically and experimentally, the possibility to use an ensemble of cold Rydberg atoms as 
a strongly non-linear optical medium which could enable strong photon-photon interactions and the deterministic 
generation non classical states of light. The quantum state of a light beam can be stored in an ensemble of cold 
atoms as a polarisation wave involving two long-lived atomic states. If one of these atomic states is a Rydberg state, 
this polariton will evolve due to long-range atomic interactions. As a result, a coherent pulse of light stored in the 
atomic medium should turn into a non-classical polaritonic state which could be retrieved as a pulse of non-classical 
light. We have theoretically shown that the Rydberg gas should act as “quantum scissors” on the stored quantum 
state, and the retrieved optical pulse should become a coherent superposition of zero and one photons presenting 
a non-classical, negative Wigner function  [1]. We have also found realistic experimental parameters to retrieve 

-
mentally investigating the non-linear optical susceptibility of a Rydberg cloud in a classical regime. 
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In light matter interfaces based on the Faraday effect quite a number of quantum information protocols have 
-

tocols a deeper understanding of the relevant noise and decoherence processes needs to be gained. In this work [1] 

resulting decay and noise terms in effective equations of motion for collective atomic spins and the forward propa-
gating light modes to the full atomic level structure. We illustrate and apply our results to the case of a quantum 
memory protocol. Our results can be applied to any Alkali atoms, and the general approach taken in this article can 
be applied to light matter interfaces and quantum memories based on different mechanisms. 

Reference 

Quantum optics… Tu-134

S. Derouault* and M. A. Bouchene

Laboratoire Collisions Agrégats Réactivité, C.N.R.S UMR 5589, IRSAMC, Université Paul Sabatier  
*derouault@irsamc.ups-tlse.fr 

We explore the interaction between an atom and a quantized pulse in the arbitrary coupling strength regim. Two 

packet interacts with an atom located in a one-dimensional waveguide, and in the second situation an atom pass 
through a single mode detuned micromaser cavity. In the former case we show that the one photon wave packet 
experienced a temporal reshaping leading its algebraic area to vanish. A Schrödinger approach is used and an inter-
pretation in the spectral domain is given. In the latter case we highlight the importance of non-adiabatic coupling, 
that depends on the mode shape, and their interplay with the (quantized) atomic motion. We show that the transfer 
of population can be modulated by varying the atomic velocity. An analogy with a Michelson interferometer is 
exhibited. 
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We describe our recent results demonstrating strong coupling between single rubidium atoms and a high-Q 
whispering-gallery-mode bottle microresonator (Q = 50 million)[1]. We observe clear signals of individual atoms 
passing through the resonator mode with interaction times of several microseconds. Given this brief interaction 

results show a strong interaction between the atom and the resonator, which is observed by the large change in light 

As an application of this system, we describe our progress towards the realization of a four-port device capable 

the Volkswagen Foundation, and the ESF is gratefully acknowledged. 
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We investigate the interaction between a single 87Rb atom and optical pulses with a controlled temporal enve-

atom with high NA lens. We have found that an atom is excited faster by using less photons in a driving pulse with 
a rising exponential shape. Although a rectangular shape eventually leads to higher excitation probability it takes 
more photons to excite the atom. We also observe that the atomic transition can be saturated with approximately 
100 photons in a pulse. This suggests that one expects to see a nonlinear interaction between atom and light for such 

This result show a possibility of optical switching for low photon numbers without cavity assistance.
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Complex designer potentials for ultracold atoms can be created by combining optical lattices, and have great 
utility for simulations of condensed matter systems. Here, using optomechanical interactions, we spectrally resolve 
atoms at individual sites of asuperlattice with site dependent mechanical resonance frequencies. This allows us to 
make a “mechanical resonance image”, mapping the atomic distribution and lattice geometry. Further, the opto-

systems acts as a coupled array of quantum mechanical resonators with implementable entanglement and state-
transfer operations. 
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The macroscopic and microscopic quantum theories are known to give corrections to the rate of spontaneous 
emission in a dielectric. At the same time, there are only few works that provide Maxwell-Bloch-type equations 
for embedded particles derived using ab initio techniques. Another problem is that competing theories often give 

-

and modify their radiative properties. A generalized master equation is derived for two-level emitters, which form 

and the radiation relaxation rate of the optical center. The formalism represents a fully microscopic approach and 
is based on a BBGKY hierarchy for reduced density matrices and correlation operators of material particles and 

of individual and collective behavior of the emitters associated with the presence of intermediate environment. The 
analytical expressions for the excitation lifetime of an optical center are shown to be in agreement with several 
experiments. The similarities and differences with the other existing theories are discussed.
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In this work we study the dynamics of several types of atom-atom correlations in the famous two-atom Fermi 
problem [1]. Although any causality issue regarding quantum mechanical probabilities in such a model was recent-
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-
cal resonators with free space access [1, 2]. These microcavities feature a very small mode volume on the order of 
a few tens of cubic wavelengths and a very large Finesse of up to 105, corresponding to quality factors of several 
millions. Thus, the Purcell factor being proportional to the ratio of quality factor and mode volume can be as high 
as 104, which can dramatically increase the emission rate of an emitter inside the cavity. 

We use the microcavities to couple solid state based emitters such as color centers in diamond to the cavity. 
First results from spectra of ensembles of nitrogen-vacancy centers coupled to the cavity show a strongly increased 

accounting for the dephasing. 

References 
[1] D. Hunger, New Journal of Physics 12, 065038 (2010).
[2] D. Hunger, AIP Advances 2, 012119 (2012). 



Quantum optics… Tu-141 239

Size effects on thermal radiation of a dielectric 

microparticle

Maki Tachikawa, Hitoshi Odashima, Naoya Kase, and Kousuke Nagase

 

-
roscopic objects, it remains an open question if Planck’s formula applies to particles of size comparable to optical 
wavelengths.  We experimentally demonstrate that thermal radiation from a micron-sized dielectric particle depends 
sensitively on its morphology and optical properties.  Our laser trapping technique levitates a high-temperature mi-
crosphere of aluminum oxide and enables emission spectroscopy of the single particle [1].  As the particle becomes 
smaller, a blackbody-like spectrum turns into a spectrum dominated by multiple peaks resonant with whispering 
gallery modes of the spherical resonator.  Analysis of the particle size dependence of the emission power reveals 

-
sition occurred in the optical trap.   
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realization of the coherently pumped microlaser. In our experiment both atomic position control and superposition 
state pumping are made possible by employing an atomic beam aperture with an array of nanoholes with a period 
matching the resonance wavelength(791 nm of barium 1S0-3P1 transition). The cavity mirrors are specially shaped so 

Preliminary data on coherent pumping will be presented and discussed.
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Optical frequency comb with non-classical properties can be produced via parametric down-conversion of a 
pumping comb in a degenerate synchronously pumped optical parametric oscillator. In the time domain we devel-
oped a quantum theory of the oscillator that describes its operation both below and above oscillation threshold and 
gives clear insight into the character of quantum properties of an output signal comb being a train of pulses. Now 
we are thinking about application of a frequency comb and its non-classical counterpart for ultra-precise posi-
tion sensing, particularly, in gravitational wave detectors. Here the fundamental limit on an accuracy of position 
determination (standard quantum limit) appears as interplay between time-arrival uncertainty of pulses and light 
back-action on a mechanical sub-system. 
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Phase coherence has dramatic effects on the transport properties of waves in random media. Interferences 
between certain scattering events may act against diffusion, and eventually lead to a complete halt of the wave 
(Anderson localization). In momentum space, such interference effects manifest themselves as the well-known 
coherent back scattering (CBS) peak, i.e. an enhanced scattering in the backward direction. A remarkable tool to 
probe phase coherence in mesoscopic systems, CBS has been widely studiedwith various kinds of waves, from light 
to electronic waves [1]. Here we report the direct observation of CBS of ultracold atoms in presence of disorder. 
Following the landmark experiments that have demonstrated Anderson localization, it constitutes a smoking gun of 
phase coherence in ultracold disordered gases. This opens new prospects to investigate phase coherence properties, 
and especially the emergence of Anderson transition in 3D. 
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Motivated by the recent achievement of single-site-resolved imaging and manipulation of strongly correlated 
bosonic systems in an optical lattice, we illustrate our progress and future plans in our attempts to realize a fermi-
onic quantum simulator. Detecting and manipulating strongly correlated fermionic systems at the level of a single 
atom will further exploit the potential of ultracold atoms as a quantum simulator for, e.g., the Fermi-Hubbard 
model, which is a key model in condensed matter physics. 

Atoms from a two-stage magneto-optical trap of 87Rb and 40K are loaded into a magnetic trap, before evapora-
tive cooling and transport in an optical trap delivers a quantum degenerate gas to a 3-dimensional optical lattice. 
By selective removal of atoms from all lattice planes but the one at the focal plane of a NA = 0.68 microscope 
objective, we will resolve the distribution and evolution of atoms across individual sites of the 2D lattice using 

or entropy distribution of quantum phases such as fermionic Mott insulators, Band insulators, metallic phases or 
Néel antiferromagnets. Single-site manipulation will be possible by means of an addressing beam focused by the 
imaging microscope, which will allow us to investigate the effect of local perturbations on the system. 
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We experimentally produce a Spin-Orbit coupled Bose-Einstein condensate with the technique of Raman cou-
pling and systematically study the dynamical properties of such a condensate. We present an experimental study 
of the collective dipole oscillation of a spin-orbit (SO) coupled Bose-Einstein condensate in a harmonic trap. A 
number of interesting properties is observed. The frequency of the center-of-mass dipole oscillation deviatesfrom 
the harmonic trap frequency and depends on the oscillation amplitude, as a manifestation of the change of single-
particle dispersion. A magnetization oscillation induced by the dipole oscillation is also observed, revealing the 
coupling of the spin to the momentum of an atom and the absence of Galilean invariance of this system. These ex-
perimental results are then compared to theoretical calculations based on variational wave function approximation. 
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The electric dipole moments of various neutral elementary particles, such as neutron, neutrinos, certain hy-
pothetical dark matter particles and others, are predicted to exist by the standard model of high energy physics 
and various extensions of it. However, the predicted values are beyond the present experimental capabilities. We 
propose to simulate and emulate the electric dipole moment of neutral relativistic particles and the ensuing effects 
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including condensate phases in which the bosons create an array of persistent currents whose “handedness” (chiral-
ity) corresponds to an emergent, discrete degree of freedom; and novel bosonic insulators, which are the particle 
analog of exotic spin liquid phases for quantum spins, among others. Here we will present a variety of theoretical 
results concerning strongly interacting bosons on a frustrated lattice, as recently realized in a seminal experiment 

in experiments on frustrated triangular and square lattices; moreover we will illustrate the possibility of observing 
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Trapped and laser cooled ions are the promising candidates for realizations of quantum information proces-
sors and simulators. Recently, many experiments related to quantum simulation with trapped ions are reported and 
quantum phase transition of Ising spin model are observed. 

Our goal is to simulate Bose-Hubbard model (BHM) by using ions. The radial vibrational phonons act as 
bosons in BHM and the coulomb coupling between ions induces phonon hopping [1]. Here we report observation 
of phonon hopping dynamics of two trapped 40Ca+ and the measured hopping rate is a few kHz [2]. Moreover, we 
succeeded in controlling the hopping rates by changing the inter-ion distance and this work is the essential step for 
physical implementation of BHM simulator with trapped ions. 
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1 1 lines emitted by highly charged H-like ions after 
radiative recombination (RR) of bare nuclei with unidirectional electrons. These calculations were performed for 
several ions with atomic numbers 10 ≤ Z ≤ 92 and various incident electron kinetic energies from 0.01 to 10 times 
the 1s ionization potential, and have included RR into states with principal quantum number up to n=6 followed 

dipole approximation with the non-relativistic and relativistic electron wavefunctions and the third in the exact 

using these three sets of cross-section data were compared with each other in order to reveal the importance of the 
relativistic and multipole effects as  and the electron energy increase.
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We present an experimental and theoretical study of Al and Sb colliding with helium at 800 mK. Zeeman re-
laxation in atom–He collisions can serve as a probe of their interaction potentials. We observe Zeeman relaxation 
by measuring dynamics of the magnetic sublevel distribution in different Zeeman states in homogeneous magnetic 

of Al, the anisotropic 2P  excited state is mixed with the isotropic 2P  ground state during a collision to cause 
relaxation. We investigate both mJ- and J
theoretical model previously developed for In and Ga. In the case of Sb, spin-orbit coupling mixes L
the ground state(4S ), and hence introduces electronic anisotropy into its interaction with He. This work constrains 
the Sb-He potentials and extends our understanding of cold collisions in pnictogens. 
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In thermal plasma, the ion- atom collisions proceed most probably though resonance processes. One of the im-
portant processes is resonate transfer excitation (RTE) followed by emission X-ray (RTEX). It causes a self cooling 
for plasma. In addition, it is identical to the dielectronic recombination (DR) in electron-ion collisions. The present 

DR′ DR′s) as well as RTEX cross 
RTEX′s)  for  Mg-like ions [Ar6+ and K24+

6+ and Kr24+ ions with He and H2 targets. The 
calculations are carried out using the adapted angular momentum average (AMA) scheme in the isolated resonance 
approximation (IRA). The results are compared with other results [1] for the same ions.
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It is well-known that increasing the nonlinearity due to repulsive atomic interactions in a double-well Bose-

the dynamical tunnelling of a Bose-Einstein condensate between period-one resonances in a single driven potential 
well. 

as compared to the non-interacting system. For nonlinearities above a critical value we generally observe that the 

re-emerges for large enough nonlinearities, an effect not present in spatial double-well tunnelling. We develop a 
two-mode model in good agreement with full numerical simulations over a wide range of parameters, which allows 
the suppression of tunnelling to be attributed to macroscopic quantum self-trapping. 

Reference 
Macroscopic Quantum Self-Trapping in Dynamical Tunnelling
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We present perturbative calculations of dipole-dipole and quadrupole-quadrupole long-range interactions be-
tween calcium, strontium and ytterbium Rydberg atoms based on the Coulomb approximation and degenerate 

C5

quadrupole) and C6 (second-order dipole-dipole), in terms of radial matrix elements and angular factors [1,2]. 
The Coulomb approximation enables the use of analytic expressions for the radial matrix elements [3] requiring 

only the orbital angular momentum and binding energies of the electronic states. The latter are obtained by extrapo-

Examination of the results reveals large variations between the different series. Two Förster resonances are 
found in the range examined, both in triplet states of strontium. Particular attention is paid to the isotropic S states 
of strontium and ytterbium, where attractive interactions are found for strontium and comparatively weak repulsive 
interactions in ytterbium. 

References 

[2]  Singer K., Stanojevic J., Weidemüller M. and Côté R. 2005 J. Phys. B 38 S295. 
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Rydberg blockade limits the number of excitations in an atomic ensemble to one, creating a powerful platform 
for quantum information processing using neutral atoms [1]. It is possible to map the Rydberg blockade process 
into a photon blockade, producing a large optical non-linearity [2]. In our experiments we aim to isolate a single 
blockaded ensemble, or superatom, and exploit the photon blockade process to produce non-classical states of light. 

In recent experiments we have focused on the writing and reading of Rydberg polaritons in the ensemble pro-
viding information on the dephasing of the superatom. 

References 
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The momentum distribution of cold atom with photoassociation was studied using laser -cooled and trapped 
85Rb. Due to the energy conservation, a pair of atoms can only be associated, if its internal kinetic energy is equal to 
the detuning of the excitation laser. In our photoassociation trap loss experiment, the atoms with a certain velocity 
was “kicked” out of trap by controlling the laser frequency. The momentum distribution was then manipulated and 
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The giant size and large polarizibility of Rydberg-atoms, resulting in strong long-range Rydberg-Rydberg inter-
actions, make them ideal to study many-body effects in ultracold atomic gases. We use an interferometric technique 
based on an optical Ramsey sequence to study such resonances in the 44d  Rydberg state of ultracold 87Rb atoms. 
With this phase sensitive method we show that we can switch and tune the inter-atomic interaction [1]. Extending 
the scheme using different electric pulse sequences we can additionally probe the coherent coupling of the involved 
pair states [2]. The coherent nature of the Förster induced interaction is crucial for many of its applications. Fur-
thermore the system presented here could be used to model Förster induced energy transfer processes which play 
an important role in biophysics. 
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Recently, the intensity-intensity correlations between probe and coupling lasers in electromagnetically induced 
-

pling and probe lasers interacted with Rb atoms under condition of electromagnetically induced absorption (EIA). 
-

-
tion G(2)(0) was transformed from 0.3 (correlation) to – 0.9 (anti-correlation). Also, G(2)(0) of EIA medium was mea-
sured as functions of the incident laser power and the temperature of the Rb atomic vapor cell. We could illuminate 
the intensity correlation and anti-correlations of EIA using the N-type four-level atomic model.
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The production of strongly coupled plasmas, where the Coulomb interaction between neighbouring particles 
dominates their kinetic energy, would allow for better understanding of dense astrophysical plasmas and for prepar-
ing bright, correlated ion and electron sources [1]. The strongly coupled regime is however hardly reached so far 
by ionising ultra-cold atomic or molecular gases, due in part to a fast re-equilibration of the ion spatial distribution. 
This phenomenon, called disorder-inducedheating, could be prevented by starting from a pre-organised sample [2]. 
To do so, we release a dense 87Rb cloud from an optical dipole trap, and continuously couple the atoms to the 55S  
Rydberg state. Using combined opticaland ion detection, we observe a sudden ionisation avalanche, triggered 
despite repulsive Rydberg interactions. Prior to its onset, we observe that strong spatial correlations have already 
built up between Rydberg atoms, which should be preserved in the avalanche to form a strongly correlated plasma. 
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In order to interpret the spectrum of the linear polarization which is produced by scattering processes observed 
close to the solar limb, we need to evaluate the impact of collisions with neutral Hydrogen atoms on polarization’s 
signals of some neutral and ionized atoms.

We present preliminary results concerning the calculation of emergent fractional linear polarization amplitudes 
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We employ a continuum distorted wave (CDW) approximation with the correct kinematics to calculate the 

are unveiled and investigated, among them a vortex, akin to a deep minimum recently uncovered in the triple 
differential cross section for electron-atom ionization collision [1]. We also explore how this structure develops 
in the multidimensional continuum of the impinging positron, the emitted electron and the recoiling ion. Finally, 

Quantum Mechanics.
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We have observed Feshbach resonances for 133 -

ratio observations at densities of only 2 × 107 cm–3. We have reproduced these resonances using coupled–channels 
calculations which are in excellent agreement with our measurements. We justify that these are S–wave resonances 
involving weakly–bound states of the triplet molecular Hamiltonian, identify the resonant closed channels, and 
explain the observed multi–peak structure. We also describe a model which precisely accounts for the collisional 
processes in the fountain and which explains the asymmetric shape of the observed Feshbach resonances in the 
regime where the kinetic energy dominates over the coupling strength. 
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The phenomenon of two-photon cooperative absorption is common in solid-state physics [1]. In a sample of 
trapped cold atoms, that effect may open up new possibilities for the study of nonlinear effects. In this work, we 
demonstrate the occurrence of a two-photon cooperative absorption in a pair of colliding cold Na atoms kept in a 

 and a P  atom. The result of this excitation is observed by ionization 
using an external light source. A model that considers only dipole-dipole interactions between the atoms allows us 
to understand the basic features observed in the experimental results. Both the pair of generated atoms and the pho-
tons originating from their decay are correlated and may have interesting applications that remain to be explored. 

Reference 
[1] J. R. Rios Leite et al., Chem. Phys. Lett. 73, 71 (1980). 

 Tu-164 Atomic interactions…

A. Simoni1,*, J.-M. Launay1, Z. Idziaszek2, and P. S. Julienne3

1. Institut de Physique de Rennes, UMR 6251 CNRS-Université de Rennes 1  
35042 Rennes Cedex, France  

 
3. Joint Quantum Institute, NIST and the University of Maryland, Gaithersburg  

Maryland 20899-8423, USA  
*andrea.simoni@univ-rennes1.fr 

dipoles and the short-range dynamics is modeled by the complex boundary condition introduced in [1]. We solve 
the scattering equations using a spectral element discretization approach that ideally exploits the sparse nature of 
the potential coupling matrix and guarantees high accuracy. Elastic, inelastic, and reactive rates are calculated as a 

depending on the experimental parameters the reaction rates can be strongly suppressed, stabilizing the gas versus 
reactive processes. The difference between bosonic and fermionic symmetry cases is discussed. The numerical 
results are interpreted on the basis of simple energy barrier considerations and of reduced adiabatic models. 
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A geometrical (Berry) phase of 180o has been observed in the electron spin exchange excitation of zinc atoms 
from the ground (3d104s2)1S0 state (MS=0) to the (3d104s5s)3S1 (MS=0) state.  The Stokes parameter P2 (aligned lin-
ear polarization) of the light emitted in the optical 468.1, 472.3, and 481.1 nm decays to the (3d104s4p)3P0,1,2 states 
reveals an aligned angular momentum. The excitation from a 1S to a 3S state was expected to be a pure exchange 
process but the Fermi statistics and Pauli exclusion principle establish the phase change of 180o. The Pauli sign is 
a geometric phase factor of topological origin such that the electron spin is “parallel transported” around a closed 

Reference
[1] J. F. Williams, L. Pravica, and S. N. Samarin, ”Topological angular momentum in electron exchange excitation of a single 

atom.”  Phys Rev A 85 022701 (1012).
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-
tion of fundamental interaction processes and for steering chemical reactions. Focussing on the best-controlled 
experimental conditions, such as using state-selected single particles and low temperatures, is crucial for the inves-
tigation of chemical processes at the most elementary level. 

potential well depth in order to trap the reaction products, while the absence of a Coulomb-barrier allows the par-
ticles to collide at short internuclear distance.

Here, we report on the experimental tuning of the exchange reaction rates of a single trapped ion with ultracold 

on chemical reaction rates and branching ratios and monitor the kinematics of the reaction products. These inves-
tigations advance chemistry with single trapped particles towards achieving quantum-limited control of chemical 
reactions and pave the way to the study of the coherence properties of a single trapped ion in an ultracold buffer gas. 
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We demonstrate that the phase shift in elastic S-wave positronium (Ps)-atom scattering can be precisely deter-

potential acting on the center-of-mass of the positron and one of the atomic electrons. The calculated phase shifts 
-

tial. Using the stochastic variational method, explicitly correlated Guassian-type basis functions are optimized and 
-

ing auxiliary one-dimensional potentials. The phase shifts calculated for the one-dimensional potential scattering 
are the same as the phase shifts of the Ps-atom scattering. For the Ps-hydrogen scattering, the present calculations 

the Kohn variational and R-matrix calculations is resolved. For Ps-helium scattering, our calculations achieve a 
higher precision than reported in any previous publication.   
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A bright, stable beam of cold thorium monoxide is an essential component of an ongoing experiment to measure 
the electron’s electric dipole moment [1]. The source presents interesting technical challenges since ThO is reac-
tive, while its production precursors, thorium metal and thorium dioxide, are highly refractory. We have realized a 
ThO source that produces 1013 molecules sr–1 s–1 in a single ro-vibrational level [2]. A ThO2 ceramic in a cryogenic 
buffergas cell is laser ablated to produce pulses of gas-phase ThO, which is cooled by the buffer gas before exiting 
the cell in a beam. We are also developing a continuous source of ThO via a high-temperature reaction between 
Th and ThO2 that promises increased peak and time-averaged yields. We discuss ongoing work and recent results. 
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The potentials of ultracold polar molecules have been discussed with respect to quantum information process-
ing and quantum simulation [1]. This experiment focuses on the production of quantum degenerate YbCs mol-
ecules. We propose to magneto-associate the atoms over a Feshbach resonance [2] and transfer them to the ground 
state using Stimulated Raman Adiabatic Passage (STIRAP) [3]. Ground state YbCs will, due to its singe valence 
electron, exhibit an electric as well as a magnetic dipole moment. It should therefore exhibit spin dependent inter-
actions in addition to long-range dipole-dipole interactions [1]. Here we outline the theoretical and experimental 
progress on creating a dual species Magneto-Optical Trap (MOT) of Yb and Cs.
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The development of laser cooling and trapping for a diverse set of atomic species revolutionized atomic and 
quantum physics. Expanding the techniques of laser cooling and trapping to molecules would provide new systems 
with complex, rich interactions. Theadditional structure that arises from the rotational and vibrational degrees of 

for use with molecules, but it is a challenge that we can overcome. In order to maintain a closed rotational manifold 
for the optical cycling transition, one typically excites from an N ″ N ′ = N ″ – 1 rotational sublevel. This excitation 
scheme corresponds to a type II MOT [1]. We will present the latest results on the development of a MOT for laser 
cooled yttrium monoxide molecules based on a resonant LC-baseball coil geometry for a time-varying magnetic 
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Recently, laser cooling of molecular beam was realized for SrF molecule by a group in Yale university[1]. The 
key issue for the laser cooling of molecules was to form an almost closed cycling transition by using a transition 
with diagonal Franck-Condon factors. Laser cooling technique of molecules could be a breakthrough for many 
experiments of ultracold molecules.

In our experiment, we are making ultracold KRb molecules by an indirect method, where K and Rb atoms are 
cooled by MOT and weekly bound molecules are formed with photoassociation from these atoms, and then the 
molecules are transferred into the rovibrational ground state (X1 +, v = 0, N = 0) by STIRAP[2]. From ab-initio 
calculations of molecular potentials, we found that X1 +-b3

0 transition may have a narrow natural linewidth and 
diagonal Franck-Condon factors. Recently, we have succeeded in observing this transition. And we have experi-
mentally determined its natural linewidth and Franck-Condon factors for (v-v′) = (0-0), (1-0) and (2-0) transitions, 

-
ated molecules is as low as 135 uK, we expect that three-dimensional laser cooling of photoassociated molecules 
can be realized by using this transition.
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The determination of the long-range anisotropic interaction between polar bialkali molecules is of crucial im-
C6 of the 

multipolar interaction depends on the dynamic polarisability of the molecule evaluated at imaginary frequencies, 
expressed as a sum over all possible radiative transitions of electronic dipole moments. Using a mixture of up-to-
date spectroscopic data and accurate ab initio data for potential energy curves, and permanent and transition dipole 

LiCs, NaK, NaRb, NaCs, KRb, KCs, RbCs) in an arbitrary vibrational level of their electronic ground state. For the 
lowest vibrational levels the C6 parameter varies from about 103 atomic units for LiNa up to 107 atomic units for 
NaCs, which will lead to different collisional regimes at ultracold temperatures. 
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trapped ultracold gases. Non-resonant light with intensities of the order of 109 2

-
nance is adiabatically moved close to k  times the trap temperature, thus enhancing its thermal weight [1]. The 
quasi-bound nature of the resonance wavefunction results in larger free-to-bound transition matrix elements and 
subsequently enhances the photoassociation rates by several orders of magnitude [2]. Results for the photoassocia-
tion rates of the Cs2 and Sr2 molecules will be presented as the laser intensity is varied.
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and important applications, such as precision measurements of fundamental constants, study of dipolar physic, 

ground state, without relying on a magnetic Feshbach resonance. We implement instead a STIRAP sequence, us-
ing laser frequencies near the weak 1S0-3P1 intercombination line, and operating on ultracold Bose condensed 84Sr 

spectroscopy on the last bound vibrational levels of the excited state 0u, 1u and the ground state 1Σg
+  potentials. We 

then produce samples of 4 × 104
2 molecules are good candi-

dates [2] for the model independent measurement of time variations of the proton-to-electron mass ratio. 
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Understanding the dynamics of larger clusters CO-(H2)n can serve as a model for molecules trapped in solid 
para-hydrogen (pH2), which is useful for a range of low-temperature physics applications. Recently, we have built 
ab initio
cluster calculations and the three-body contributions to the nine-dimensional potential energy surface in the van 

pH2 clusters are predicted to 
-

the system. In order to verify the validity of this criterion, it is necessary to study the behavior of molecules in the 
pH2

rotational motion is traced using a path integral hybrid Monte Carlo (PIHMC) method. A cluster size dependence 
of the effective rotational constant is presented. It is found that the increase in rotational constants is also seen in 
the pH2 pH2 cluster around 
the CO molecule.
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Due to its paramagnetic ground state YbRb is an interesting candidate for the realization of dipolar molecules 

the electronic ground stateof YbRb which is an important step towards the realization of YbRb ground state moel-
cules [1]. Using two-photon photoassociation spectroscopy in laser-cooled mixtures of 87Rb and various Yb iso-
topes we are able to determine the binding energies of weakly-bound vibrational levels and the positions of possible 
magnetic Feshbach resonances. Recent theoretical work suggests that also in mixtures of alkali and spin-singlett 
atoms magnetic Feshbach resonances could be experimentally accessible [2]. From additional investigations by 
means of Autler-Townes spectroscopy we obtain information on the transition rates between vibrational levels of 
different electronic molecular states. 
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Arrays of permanent magnetic slabs for producing 2D arrays of microtraps for trapping and controlling ultra-
cold atoms have been introduced [1]. We propose a 2D array of square magnetic slabs which has been previously 
used to obtain analytical expressions for a class of permanent magnetic lattices [2]. We also, propose a more 

Our analytical expressions and numerical results for different atoms are in very good agreement. The second pattern 
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We report a realization of determinately trapping individual isotopic 85Rb and 87Rb atoms in a ring shaped opti-
cal far-off resonant trap (FORT) array. The sites of the array and the species trapped in sites are fully manipulated 
by using a blue-detuned Laguerre-Gaussian (LG) beam[1]. The LG beam has a repulsive potential and prevents the 
trap already having an atom from loading a second type of atom and from light assisted atom-atom collision. Using 

85Rb-87Rb dual-species, an extension to other dual-species is straightfor-

the spatial light modulator [2], this work would be a key step toward the study of 85Rb-87Rb collision and formation 
of a single hetero-nuclear dipolar molecule. 
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-
-

-
bre can be measured. The study is useful for characterizing the effect which surface interactions have on cold atoms.
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An original beam-laser spectroscopy set-up has been built at University of Liège. This setup allows us to pro-
duce atomic beams from samples heated in a high temperature oven. With help of laser beams crossing the atomic 

spectroscopy is obtained. We get similar resolutions to those inherent of usual laser saturation spectroscopy setups, 
while being able to access atomic levels otherwise unaccessible with saturation spectroscopy. Preliminary results 

interacting with the laser beam. Our setup also allows for colinear optical pumping to enhance the laser absorption 
signals. These effects will be discussed as well, along with future prospects of our experiments. 
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We have set up a laser system based on laser diodes from Blue-Ray devices operating at 410.6 nm [1]. This 
system consists of a master oscillator and a slave laser. The master is a Blue-Ray chip with extended resonator; 
output power is 20 mW and the spectral width is of 1.2 MHz. The slave laser is injection locked to the master. The 
system delivers 120 mW of blue light in single frequency regime. With the help of this system we demonstrate laser 
cooling and magneto-optical trapping of 30000 Tm atoms. Previously, laser cooling of Tm was demonstrated by a 
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consequently provide a suitable environment to study quantum information processing and quantum computing. 
We develop simulation of the classical and quantum motion of a single trapped ion in a linear Paul trap. In particu-
lar we make use of Floquet theory to reduce the problem to an effective time-independent one, based on the time 

ion, where all degrees of freedom are treated quantum mechanically.
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In recent years, there has been increasing interest in ultracold polar molecules. In particular, a molecule consist-
ing of alkali and alkali-earth atoms has an electron spin, offering variety of research such as quantum simulators of 
lattice spin models. Recently, the electric dipole moment of the RbSr molecule has been predicted to be 1.36 Debye 
in the rovibrational ground state [1], which is advantageous to explore new quantum phases such as a crystalline 
phase. 

We constructed an apparatus for laser cooling of Rb and Sr. For laser cooling of Sr, a 461-nm cooling beam 
was derived from a SHG cavity using a KNbO3 crystal [2], whereas a 497-nm repumping beam was derived from a 
PPLN waveguide. We succeeded in simultaneous magneto-optical trapping of Rb and Sr. 
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We present the realization of large Coulomb crystals containing up to 5 × 106 strontium ions. This kind of 
-

copy [2]. Our experiment is based on a linear Paul trap loaded by photo-ionization of a strontium atomic vapor 
using ultrafast pulses allowing for the formation of large multi-isotope Sr+ Coulomb crystals. We also present a 
method for controlling the ratio between the various strontium isotopes in the ion crystals. For example we real-
ized pure crystals (of 88Sr+, 86Sr+, and 84Sr+

(e.g. 86Sr+ + 84Sr+). Coulomb crystals containing two spatially segregated isotopes have applications in quantum in-
formation experiments in which one isotope sympathetically cools a second isotope fully available for quantum ma-
nipulation. We also present preliminary measurements of single-pass absorption realized in such atomic samples. 
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We investigate the guiding of electrons in a miniaturized planar ac-quadrupole guide (linear Paul trap) [1]. 
Electrons propagating freely along electrodes on a micro-fabricated chip experience a tight transverse harmonic 

potential is still resolvable by electron optics. This encourages experiments to prepare electrons in the transverse 
motional ground state by matching the wavefunction of an incident electron with the ground state of the microwave 
guide. Here we report on our ongoing experimental efforts. We use a single-atom tip electron emitter, a point source 
for electrons producing an exceptionally bright and fully coherent electron beam, for injection into the guide. Ef-

electron wavefunction. For collimation of the electron wavepacket right after emission we are fabricating a sub-mi-
cron electrostatic lens. We present the current status of the experiment as well as numerical simulations on quantum 
mechanical electron wavefunction propagation. In this context electron guiding represents an ideal starting point 
for guided matter-wave interferometry and controlled electron-electron or electron-surface interactions where the 
quantum mechanical states of the guide serves as carrier of quantum information.
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Laser cooling atoms to ultracold temperatures has opened a new fruitful regime for atomic physics. Closed shell 
atomic ions, such as Na+, and nearly all molecular ions lack the optical transitions that are required for laser cooling, 
precluding their use in a variety of experiments, including near zero-K reaction studies and applications such as 
quantum gates. We have created a hybrid atom-ion trap system to cool atomic or molecular ions which cannot be 
laser cooled [1]. It consists of a magneto-optic trap (MOT) for Na, concentric with a linear Paul r.f. ion trap [2,3].  
Recent simulations we have carried out using SIMION 7 show that cold MOT atoms may be used to sympatheti-

exposed to the MOT have extended lifetimes in the Paul trap. We have studied secular frequency quenching of 
unwanted ions (e.g. Na2+) from the Paul trap, without disturbing the trapped Na+ ions.
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The magneto-optical traps allow cooling and trapping of atoms. Some of the possible applications for the cold 

[1]The purpose of our research is to study the behaviour of the movement of atoms by varying some parameters 
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A noisy environment induces unwanted disturbances to quantum states and leads to decoherence. From this 
point of view, a decoherence-free subspace (DFS) is well known to prolong the coherence time. In particular, a DFS 
using a dressed state [1] (“dressed DFS”) has the advantage that quantum states are protected even in the presence 

-

projections of total angular momentum are zero can be used to construct the dressed DFS. 
We demonstrate dressed decoherence-free entangled state [2] i.e. a logical qubit in dressed DFS using a com-

bination of a dressed state of rf qubits and an Mølmer-Sørensen interaction. The coherence time of this entangled 
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Ultracold mixtures hold the promise of understanding new phases of matter and collisions at very low energies. 
By combining the capabilities of the atom chip with optical dipole trapping, it will be possible to trap these mixtures 
in low dimensions and tune their scattering lengths via Feshbach resonances. In this way it will also be possible 
to realise experiments with additional magnetic potentials, position dependent interactions or impurity dynamics. 
Here we present the current status of our Lithium and Cesium experiment. We detail the cooling schemes for both 
atom species and include the recent development of implementing an optical dipole trap. We discuss ideas for fu-
ture measurements with separately addressable Bose-Fermi mixtures in optical dipoletraps, such as transport and 
impurity studies in low dimensions, close to a chip surface. 
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We report on the progress on a laser based accelerator for studying cold collisions between ultracold atoms. 
-

pendence of three-body scattering observables [1] and to implement “hard probes” for strongly interacting gases. 
Having demonstrated and characterized the working principle of the optical collider [3] using 87Rb atoms in the 
F m

F
= , =2 2  ground state, we are presently extending the scheme to multiple internal quantum states and to col-

-
lision energies into the millikelvin (measured in units of the Boltzmann constant) regime with nanokelvin samples.
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Recent experiments have demonstrated steps toward creating neutral atom analogs to superconducting cir-
cuits[1]. The goals of these experiments are to create complex systems like Josephson junctions. For these devices 

experimental realization of these fundamental elements. We have created an atom analog to a capacitor that we dis-
charged through a resistor and inductor. We derive theoretical values for the capacitance, resistance and inductance, 
showing them to be analogous to the quantum capacitance[2], Sharvin resistance[3] and kinetic inductance[4] 
found in condensed matter. This atomtronic circuit is implemented in a thermal sample of laser cooled rubidium 

-
ized phase-contrast imaging technique. We also discuss current progress in extending this work to a sodium BEC. 
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atoms and all molecules have transitions that can radiatively branch out to a multitude of other states. Exciting pop-
ulation from all these lower-energy states requires a large number of lasers which makes the conventional scheme 

(FC) spectrum generated by the pulse train can drive many transitions simultaneously. Positions and intensities of 
individual FC teeth can be manipulated by pulse shaping techniques. Recently we demonstrated that the ensembles 
of two- and three-level systems can be effectively cooled by such trains [1]. As a result of cooling, atomic velocity 

c T, 

c is the carrier wave length and T is the pulse repetition period. Here we report our theoretical results on 
Doppler cooling multilevel systems with coherent trains of shaped laser pulses. 
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Long-range interactions between Rydberg atoms in cold atom ensembles lead to spatial correlations that are 
not present in the ground state distribution [1, 2]. We aim to study these correlations using a scanning autoionising 
microscopy technique. We excite a cloud of Sr atoms cooled to 5mK to a Rydberg state via a resonant two-photon 
transition using narrowband CW lasers. Working with strontium means there is a second valence electron with a 
transition at an accessible optical wavelength. Excitation of this electron leads to autoionisation of the atom. Previ-
ously we have used the fact that the autoionisation spectrum is dependent upon the atomic state of the Rydberg atom 
to study the population transfer mechanics caused by the onset of plasma formation [3]. By translating a tightly 
focused autoionisation laser across the ensemble we have extended the technique to measure the spatial distribution 
of the Rydberg atoms. We present preliminary measurements of the 2D Rydberg state spatial distribution. 
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Olga Machtey, Zav Shotan, Noam Gross, and Lev Khaykovich

-
tions from the universal behavior are expected, and provide a quantitative study of this effect. Our measurements 

prediction. The result of a different experimental technique concurs with the rf association measurements. This 
technique explores secondary collisions of the dimer, formed in a three-body recombination, which cross-sections 

elastic and inelastic collisions of a dimer with trapped atoms based on the available analytical expressions for the 
cross-sections of these events. We show shift in the position of the secondary collisions’ enhancement for large 
collisional opacities. 
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model, which predicts a transition to a ferromagnetic state when the strength of the repulsive interaction exceeds 
the Pauli repulsion between identical fermions. Here we report on our studies of a quasi one-dimensional system 
of ultracold fermionic 6

-

nance. This allows us to create long-lived metastable states in which the energy of theinteracting spin ↑↓  system 
is larger than energy of the corresponding spin-polarized system. We probe the spin-spin correlations in the system 
by letting a fraction of the particles escape from the trap and measuring the total spin of the remaining ensemble. 

-
tems created by the spilling process, which signals the appearance of ferromagnetic correlations. 
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We consider a system of three helium-4 atoms, which is so far the simplest realistic three-body system exhibit-

calculate the bound states using a realistic two-body potential, and then analyse how they can be reproduced by 

body levels is found to be consistent with recent   experimental observations in other atomic species.
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This project investigates the properties of fermionic molecules 87Rb40K, including (i) its formation from a mixed 
gas of bosonic 87Rb and fermionic 40 -
tion, which sheds light on both the formation and decay processes of the fermionic molecules. We mainly approach 

87Rb) and two fermions (40

a harmonic trap using a standard correlated-Gaussian basis throughout the range of a broad Fano-Feshbach reso-
nance. We also perform hypherspherical correlated-Gaussian calculation of the adiabatic hyperspherical potential 
curve describing the bose-fermi mixture system at various scattering lengths. The single channel calculation and 
multi-channel calculation provide effective dimer-atom scattering lengths and trimer-atom scattering lengths as 
well as the dimer-dimer scattering phase shift.The avoided crossings in the hyperspherical potential curves of 
the few-body system enables an interpretation of the scattering dynamics of the bose-fermi mixture system. This 
single- and multi-channel scattering calculation shows agreement with the zero-range potential calculation in a 
harmonic trap [1, 2]. 
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near a superconducting Nb disc with cold Rb atoms. When a superconducting disc in a pure state is exposed to a 

and atoms released in the potential are temporally accumulated near the surface. When the disc temperature is set 

Reference 
[1]  Tetsuya Mukai, , in preparation. 



268

2

M. Auzinsh, A. Berzins*, R. Ferber, F. Gahbauer, L. Kalvans, A. Mozers, and D. Opalevs

Laser Centre, The University of Latvia, LV-1586 Riga 
*andris.beerzinsh@gmail.com

We present experimental results and theoretical predictions of magneto-optical resonances changing from 
bright to dark resonances as a result of temperature changes when excited by circularly polarized light at the D2 
transition of rubidium in natural mixture [1]. As the temperature was increased, the contrast of the bright resonance 
decreased until the bright resonance disappeared at around 400C. At this temperature, the optical depth traversed 
by the laser beam in the 25-mm-long cell was ~ 0.39. At higher temperatures, a dark resonance was observed, and 
its contrast grew with increasing temperature. The change from bright to dark resonance around an optical depth 
of 0.66 is probably related to reabsorption. With each reabsorption cycle, information about the original coherent 

although the resonance remained dark over the entire range of accessible temperatures.
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[1]. Sodium 3S ,F ″ = 1,2 3 1 2
1 2
S F/ , ′′ = ,  and 3 1 2

1 2
P F/ , ′ = ,

S

3 1 2 7
1 2 3 2
P F D/ /, = , →  transition. The excitation spectrum of the 7D  state shows the presence of an intense main 

S shifts the the side-peaks further apart, while 
the position of the main peak is hardly affected. These observations are explained in the dressed-state formalism; 

F ″ = 1 or F ″ = 2 component of the ground state is coupled to the two 
′ = ,F 1 2  levels of 3P . We show that the such system exhibits a visible “gray” state whose eigenvalue is weakly 

S S.  
We acknowledge support by the EU FP7 Centre of Excellence project FOTONIKA-LV and IRSES Project 

COLIMA. 
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by the application of composite pulse sequences. By making suitable choices for the phases of the constituent 
pulses, we suppress excitation channels even when the couplings between the corresponding states are different 
from zero. Compensation with respect to deviations in polarization, pulse area, and detuning are demonstrated. 
The accuracy of the proposed technique, its experimental feasibility, and its robustness make it suitable for various 
physical applications in quantum information processing and quantum optics. 

Wenhua Hai, Kuo Hai, and Qiong Chen

Department of Physics, Hunan Normal University, Changsha 410081, China

For a single particle held in a bipartite superlattice with two different separations and under a external driving 
of arbitrary shape, we construct analytical solutions in the nearest-neighbour tight binding approximation, through 
a discrete Fourier transformation. By optimally designing the driving shapes, the analytical solutions are adopted 
to quantitatively describe and control transport characterizations of the particle. Take the biperiodic driving, Rosen-
Zener pulse and Gaussian pulse as examples, the selective coherent destruction of tunneling (SCDT) and dynamic 
localization are found, which are applied to coherent manipulations of the directed motion and Rabi oscillation. The 
results could be extended to few-particle case and are useful for transporting quantum information carried by the 
particles in a bipartite superlattice material or a bipartite optical lattice.

References 
[1] L. Guidoni and P. Verkerk, “Direct observation of atomic localization in optical superlattices”, Phys. Rev. A57, R1501 (1998).

[3] Kuo Hai, Wenhua Hai, and Qiong Chen, “Controlling transport and entanglement of two particles in a bipartite lattice”, Phys. 
Rev. A82, 053412 (2010).

[4] Kuo Hai, Qiong Chen, and Wenhua hai,  “Instability inducing directed tunneling of a single particle in a bipartite lattice”, J. 
Phys. B44, 035507(2011).



270

Chang Yong Park2,**, Jun Woo Cho1, Hangyeol Lee1, Sangkyung Lee1, Jaewook Ahn1,*, Won-Kyu Lee2,  
Dai-Hyuk Yu2, and Sun Kyung Lee2

1. Department of Physics, KAIST, Daejeon 305-701  
2. Korea Research Institute of Science and Standards, Daejeon 305-340, Korea  

 
**cypark@kriss.re.kr 

Radiative decay from the excited 1P1 state to metastable 3P2 and 3P0 states is expected to limit the attainable 
trapped atomic population in a magneto-optic trap of ytterbium (Yb) atoms. In experiments we have carried out 
with optical repumping of 3P0,2 states to 3P1, we observe an enhanced yield of trapped atoms in the excited 1P1 state. 
The individual decay rate to each metastable state is measured and the results show excellent agreement with the 
theoretical values.
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The coupled-cluster theory is one of the most reliable quantum many-body theory [1]. In the present work, 
we have developed perturbed relativistic coupled-cluster (PRCC) theory [2] to incorporate the effect of external 

singles and doubles cluster operators are derived and the contributing diagrams are examined. These diagrams are 
further evaluated using angular momentum algebra. The PRCC operators, obtained by solving the coupled non-
linear equations, are then used for the dipole polarizability calculation of closed-shell systems. In this poster, we 
will present results of electric dipole polarizability of noble gas atoms using the PRCC theory. 
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-
ing the long-standing question of what is the mechanism underlying wall-collision induced relaxation and renew interest 
in applications of alkali vapor cells to secondary frequency standards. We measure the Zeeman relaxation time, and the 
width and frequency shift of the clock resonance, in 85Rb and 87Rb vapor cells with alkene anti-relaxation coating. in paraf-

relaxation mechanisms of alkene and alkane cell-wall coatings. 

Reference 
[1] M. V. Balabas, T. Karaulanov, M. P. Ledbetter, and D. Budker. 

Spin-Relaxation Time, Phys. Rev. Lett.105, pp. 7 (2010). 

Beyond atomic physics… Tu-206

atom chips

Mirco Siercke1,2,*, Kin Sung Chan2, Bo Zhang1,2, Mussie Beian1,2,  
Michael J. Lim3, and Rainer Dumke1,2

1. Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2,  
Singapore 117543, Singapore  

2. Division of Physics and Applied Physics, Nanyang Technological University, 21 Nanyang Link,  
Singapore 637371, Singapore  

 
Glassboro, NJ 08028, USA  

*cqtmirco@nus.edu.sg 

The use of superconductors in atom chips is a recent development, presenting new opportunities for atom optics [1, 

-
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In optomechanics, laser light is used for cooling and control of the vibrations of micromechanical oscillators, 
with many similarities to the cooling and trapping of atoms. It has been proposed that laser light could also be used 
to couple the motion of atoms in a trap to the vibrations of a mechanical oscillator [1]. In the resulting hybrid opto-
mechanical system the atoms could be used to read out the oscillator, to engineer its dissipation, and ultimately to 
perform quantum information tasks. 

We have realized a hybrid optomechanical system by coupling ultracold atoms to a micromechanical mem-

surface, resulting in optomechanical coupling as proposed in [1]. We observe both the effect of the membrane 
vibrations onto the atoms as well as the backaction of the atomic motion onto the membrane. By coupling the 
membrane to laser-cooled atoms, we engineer the dissipation rate of the membrane. This mechanism can be used 
to sympathetically cool the membrane with the atoms. 
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Reaching the quantum ground state of a macroscopic mechanical object is a major experimental challenge in 
physics, at the origin of the rapid emergence of cavity optomechanics. We developed a new generation of opto-
mechanical devices, either based on microgram 1-mm long quartz micropillar with very high mechanical quality 
factor (106) [1], or on 100-pg photonic crystal suspended nanomembranes [2]. Both are used as end mirror in a 

of the resonator displacement. We expect to reach the ground state of such optomechanical resonators combining 
cryogenic cooling with a dilution fridge at 30 mK and radiation-pressure cooling [3]. We already carried out a 
quantum-limited measurement of the micropillar thermal noise at low temperature, and the cold damping of the 
nanomembrane. 
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The equilibrium characteristic of gravitational systems is theoretically well established. For example it has been 
shown that particular phase transition occurs in the presence of non-additive long range interaction. In this context 
microcanonical and canonical ensembles are not anymore equivalent.  This situation is in striking contrast with the 
experimental side of the subject where there is, so far, no controllable experimental system. We have recently show 
some experimental evidences of a gravitational-like interaction on an one-dimensional test system consisting in a 
cold gas of neutral Strontium atoms. For that purpose, two counter-propagating laser beams are tuned on the nar-

2 law and the 
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We report on recent progress of room-temperature electron spin sensing for biological applications using nitro-
gen-vacancy (NV) centers in diamond. Room-temperature detection of a small number of electron spins, situated 
outside the measurement substrate, has yet to be accomplished. Such an advance could lead to a number of applica-
tions, including measurement of concentrations of radicals in living cells, detection of magnetic resonance signals 
from individual electron or nuclear spins of complex biological molecules, and monitoring the ion channel function 
across cell membranes (important for exploring drug delivery mechanisms). Thus, the ability to measure magnetic 

be of major importance to the biological sciences.
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We present an in situ beam characterization technique to analyze femtosecond optical beams in a folded version 
of a 2f-2f setup [1]. This technique makes use of a two-dimensional spatial light modulator (SLM) to holographi-
cally redirect radiation between different diffraction orders. This manipulation of light between diffraction orders 
is carried out locally within the beam. Because SLMs can withstand intensities of up to I  1011 2, this makes 

-

by holographically knife-edging and tomographically reconstructing both continuous wave and broadband radia-
tion in transverse optical modes. This work was supported by the Robert A. Welch Foundation (grant No. A1546) 
and the National Science Foundation (grant No. 0722800).
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Photoelectron yields from the ionization of xenon with linearly polarized, unchirped 50 fs laser pulses were 
measured for a set of laser intensities using an above threshold ionization (ATI) [1] apparatus. All laser parameters 
other than the radiation intensity were held constant over the set of intensity measurements. A recently developed 
deconvolution algorithm was used to retrieve the photoelectron ionization probability from spatially averaged data 
in three dimension. Finally, an error analysis was performed to determine the stability and accuracy of the algorithm 
as well as the quality of the data. It was found that the algorithm produced greater contrast for peaks in the ATI spec-

ionization was observed in the ionization yields. The error analysis revealed that the algorithm was stable under 
the experimental conditions for a range of intensities. This work was supported by the Robert A. Welch Foundation 

(W911NF-07-1-0475).

Reference 
[1] G. G. Paulus, W. Nicklich, Huale Xu, P. Lambropoulos, and H. Walther, “Plateau in above threshold ionization spectra”, Phys. 

Rev. Lett. 72, 2851–2854 (1994).



simulation

Kazuhide Ichikawa, Masahiro Fukuda, and Akitomo Tachibana*

Department of Micro Engineering, Kyoto University, Kyoto 606-8501, Japan  
*akitomo@scl.kyoto-u.ac.jp 

Simulations of time evolution of the quantum system involving light and matter are so far performed using the 

-

to the perturbative approach. We believe such a theoretical technique opens up a way to study and predict new phe-
nomena. Rigged QED [1] is a theory which has been proposed to treat dynamics of charged particles and photons 

time evolution of the quantum system employing Rigged QED. We found “electron-positron oscillations” in the 
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above-threshold ionization (ATI) in laser-irradiated carbon molecule 
of fullerene C60 is addressed theoretically within the velocity-gauge (VG) formulation of molecular  
approximation (SFA) [1]. Our VG-SFA results demonstrate a high suppression of ATI peaks in two different (viz., 
in low-energy and high-energy) domains of calculated molecular photoelectron spectrum and two respective pro-
nounced interference minima both arising due to destructive intramolecular (multislit) quantum interference. The 
applied approach also suggests quite a clear and transparent interpretation for the physical mechanism underlying 
the phenomenon of high suppression in C60
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Propagation of elliptically polarized light pulses under the coherent population trapping (CPT) in a medium 
of two-level atoms with degenerate energy levels is studied. Theoretical analysis is based on the density matrix 
formalism and the reduced Maxwell’s equation. It is shown that the pulses of ellipticity and orientation angle of 
the polarization ellipse travel with delay. We derive the analytical expression for a group velocity for all possible 
“dark” transitions Jg e = J (J is integer), where Jg and Je are the total angular momentum of atomic ground and 
excited states. In addition, the new interesting effect is revealed. The sense of the effect consists in stimulated phase 
modulation due to variation of the polarization ellipse spatial orientation. This phase modulation includes two light 

in sync with the pulse of the orientation angle.
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The robustness of cohenrent nuclear spin superposition was to be tested experimentally under electromag-
87 atoms in |1S0 F

|1S0 F
3P1 F

planned to be measured in the experiment. A numerical semi-classical approach to solve the distribution of atoms 
[2] under the previous set-up was performed so as to provide an insight to the situation where a minority of ‘impu-
rity’ Sr87 atoms in different spin states existed, resulting in low temperature collisions in the cloud. Such impact in 
spin coherence of the atom cloud was to be investigated through the simulation. 
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Decoherence of central spin S I spins leads to loss quantum property of 
central spin. The coupling between different central spins S and intrabath coupling is neglected. We apply spin 

i at time ti and � i}. We use controlled randomness in dynamical decoupling for switching off unwanted 
evolution in interacting quantum systems by proposing a random decoupling setting that uses a random decoupler 

random control path. 
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smooth transition to black hole absorption
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es with radius R that slightly exceeds the Schwarzschild radius rs -

R rs. The cross-section of 
particle capture into these resonances at low energy is equal to the absorption cross-section for a Schwarzschild 
black hole; thus, a non-singular static metric acquires black-hole properties before the actual formation of a black 

R rs 
all bound states tend to zero energy and the energy spectrum becomes quasi-continuous. However until there is a 
singularity in the metric, there are no zero-energy states, and hence no pair production occurs in these systems. 
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Adiabatic evolution of light in parallel curved optical waveguide array is theoretically investigated. For two 
waveguides it has been demonstrated in [1]. This problem is shown to bear a close connection with coherent popu-
lation transfer in a “bow-tie” model for atoms and molecules. For the presented models complete light transfer 
between the outer waveguides is achieved, and the respective conditions of validity are given. These conditions 
impose certain restrictions on the geometry of the waveguides and on the optical properties of the system. The case 
of three waveguides is analysed using the solutions of the well known bow-tie model. For the case of more than 
three waveguides the system can be reduced to a number of three-level waveguide sub-systems. The latter is illus-

for complete light transfer. 
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increasing the detection energy. This behavior is explained by the fact that the splitting is essentially due to the 
anisotropic shape in this quantum ring [1]. Symmetry of the QR structures as well as its breaking cause character-
istic features in the optical spectra, which are determined by the electron –hole exchange and the Zeeman interac-
tion of the carriers. The symmetry breaking is either inherent to the dot due to geometry asymmetries, or it can be 
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Atomic fountains with launch height less than one meter are widely used in atomic frequency standards and 
atom interferometers. One of the key parameters of fountain type atom interferometer is the free evolution time 
between Raman pulses. Longer falling time is better for improving the accuracy of an atom interferometer  [1]. For 
this purpose, large size atomic fountain is necessary for precision measurements based on atom interferometers. We 

-
ing fountain height exceeds 12 m and the free evolution time for fountain type atom interferometer is up to 1.50 s. 
The temperatures and cold atom numbers of different fountain heights were measured, and the experimental data 
are agreed well with theoretical expectation.
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Exact and asymptotic lineshape expressions are derived from the semi-classical density matrix representation 

-
sion of the two-photon Raman transition and frequency-shifts associated to the clock transition. From an adiabatic 

trap a large number of atoms into a coherent superposition of long-lived states is established. When time separated 

a coherent steady-state preparation and the second pulse is very short to avoid repumping into a new dark state, 
Dark Resonance fringes mixing continuous-wave lineshape properties and coherent Ramsey oscillations are cre-
ated. Those fringes allow interrogation schemes bypassing the power broadening effect. We point out that different 
observables experience different shifts on the lower-state clock transition.
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to optical sensors. We report on experimental progress towards realising atom interferometry in a novel toriodal 
ring trap for ultracold atomic gases [1]. The time-averaged trapping potential is formed by applying a uniform a.c. 

We present a characterisation of of the time-averaged potential for a laser cooled cloud in a 5 mm ring trap, and 
present the status of a second generation apparatus to use Bose (87Rb) and Fermi (40K) degenerate gases for Sagnac 
interferometry within a ring trap of radius 2 mm. 
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inertial navigation, seismic studies, gravimeter surveys, and tests of fundamental physics. A key advantage of AI 
systems over competing technologies is their inherent capability for long-term stability and intrinsic calibration. 
However, in their current form, AI systems are ill-suited to complement or replace the leading technologies in the 
more dynamic of these applications due to their relatively large size and low operating rates, which are on the order 
of one Hertz.

We demonstrate a compact AI accelerometer operating at rates between 50 and 330 Hertz, roughly two orders 
of magnitude higher than any other published AI accelerometer, achieving sensitivities on the order of µg
This operating rate, sensor size, and sensitivity level open the door for AI systems to be considered suitable for ap-

system, allowing simultaneous acceleration and rotation measurements, which is projected to have operating rates 
and sensitivities suitable for dynamic environments.
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c 
and thus do not experience time. A single particle with nonzero rest mass m0, however, can. Relativity and quantum 
mechanics relate its mass, energy E, and the reduced Planck constant  as E=m0c2

0

0 [1], but it has never been directly demonstrated that Compton frequency oscillations are 
physically meaningful - e.g., by using them as the basis for a clock. Combining an atom interferometer and a fre-
quency comb, here we present a clock stabilized to a fraction of Compton frequency. By measuring the Compton 

This could be used to produce a macroscopic mass standard of superior accuracy and repeatability which is directly 
.
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Measurements of the acceleration due to gravity for bodies of differing composition have long been used to 
test Einstein’s equivalence principle underlying general relativity. A 6Li-7Li matter wave interferometer test of EEP 
would have high sensitivity to new physics because of the relatively large difference between 6,7Li nuclei [1]. An 

both as a waveguide to prevent atom losses due to the high thermal velocity of Li, and as large momentum transfer 
beam splitters in analogy to the Bloch-Bragg-Bloch beam splitters developed by us [2]. We anticipate an accuracy 
of 10-14 g for the differential acceleration measurement. We discuss investigations of novel all-optical sub-doppler 
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We present our recent progresses towards the realization of an atomic double well interferometer employing 
a Bose-Einstein condensate of 39K with tunable interactions. The tunability of interactions, guaranteed by several 
wide Feshbach resonances available for this particular atomic species, will enable us to create squeezed states to 
be fed at the interferometer input as well as to operate the interferometer in absence of interactions. The former 
ability will allow us to reach sub-shot noise resolutions and the latter to avoid interaction induced decoherence. We 
achieved condensation of 39

sub-Doppler cooling for this species [1] and the employment of Feshbach assisted evaporation in an optical dipole 
trap. Pure condensates containing up to 8 × 105 potassium atoms can be prepared in less than 20 seconds in a science 
chamber with large optical access. The double well is under development and will be realized by employing an opti-
cal superlattice generated by the interference of two pair of bichromatic beams with 1064 and 532 nm wavelengths. 
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We observe matterwave interference of a single cesium atom in free fall. The interferometer is an absolute sen-
sor of acceleration and we show that this technique is sensitive to forces at the level of 3.2 × 10–27 Newtons with 
a spatial resolutionat the micron scale. We observe the build up of the interference pattern one atom at a time in 
an interferometer where the mean path separation extends far beyond the coherence length of the atom. Using the 
coherence length of the atom wavepacket as a metric, we directly probe the velocity distribution and measure the 
temperature in 1-D of a single atom in free fall.
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Gravimeters based on atom interferometry have shown impressive results (sensitivity ~ 10  g.Hz  ) but need 
a falling distance of at least 7 cm, preventing them from being miniaturized and making local gravity measurement. 
Atomic gravimeters based on Bloch oscillations or based on suspension of atoms using optical pulses can measure 
gravity with an interaction distance of a few micrometers but the performance (sensitivity ~ 10  g in one hour) is 
reduced compared to gravimeters based on atom interferometry. 

We present an atom gravimeter combining atom interferometry and Bloch oscillations. This scheme allows us 
to associate the sensitivity provided by atom interferometry and the locality provided by Bloch oscillations. With a 
falling distance of 0.8 mm, we achieve a sensitivity of 2 × 10  g with an integration time of 300 s. No bias associ-
ated with the Bloch oscillations has been measured. A contrast decay with Bloch oscillations has been observed and 
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The problem of resonant Kapitza – Dirac diffraction is discussed in Raman – Nath approximation out of fa-
miliar Bessel function approximation (applicable for zero and large resonance detuning cases). We show that in 
case when the initial atomic momentum state is prepared in a form of discrete Gaussian distribution, instead of a 
monotonic broadening within the Bessel function approximation, the initial distribution splits into two identical 
peaks. These peaks, keeping their form, symmetrically move away from the distribution center during interaction 
time. We also discuss conditions under which is possible to obtain a table-shaped form for momentum distribution, 
which is a strongly recommended distribution in high resolution spectroscopy in optics.
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in 1993 [1]. This phase, closely related to the Aharonov-Bohm and the Aharonov-Casher phases, appears when an 
electric dipole d propagates with a velocity v B and this phase is proportional to d.(v×B). In 

between the two interferometers arms. With our arrangement, the He-McKellar-Wilkens phase shift is small, about 

recording procedure cancelling phase drifts and to a detailed analysis of stray phases. The measured value is in good 
agreement with theory [2]. 
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The He-McKellar-Wilkens (HMW) topological phase [1] appears when an electric dipole travels though a mag-

interpret because the signal is the sum of the contribution of all the magnetic sub-levels of the atom ground state but 
we can simplify considerably the interpretation of the experiments by pumping the lithium beam in a single F,mF 
sub-level. We have chosen to pump the atoms in the F = 2, mF = + 2 (or – 2) sub-level by using two lasers on com-
ponents of the D1 line. We have characterized the pumped beam by optical spectroscopy and by an interferometric 

distribution over the F,mF sub-levels. We will present our experimental results and we will discuss the use of the 
pumped beam for a new measurement of the HMW phase.
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Exceptional fractional frequency uncertainty of parts in 10-18 has been reported using 27Al+ in a single-ion 
optical clock [1]. Here we investigate another promising ion candidate; indium (115In+) which, like 27Al+, has small 
blackbody radiation shift compared to other neutral and ionic clock candidates. Although current techniques using 
indium have been unable to reach this level of performance, recently proposed new implementations [2] indicate 
this exceptionally low uncertainty is attainable. This new approach sympathetically cools an indium ion using 
laser-cooled Ca+ ions, and detects the clock transition by electron shelving using CW light at the 1S0-3P1 transition 
(230nm, 360kHz), or using the 1S0-1P1 transition (159nm, ~200MHz) by pulses prepared by high harmonic genera-
tion. Of critical importance is the 237nm clock laser, which must be stable in frequency for over 100 seconds during 
the long diagnosis period. We report details of the 237nm radiation generated by two-stage frequency doubling of 

low sensitivity to vibration.

References
[1] C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, T. Rosenband, Phy. Rev. Lett. 104, 070802 (2010).
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We report progression in the reduction of the linewidth of a lab-built Ti Sa laser at 729 nm, with the goal to 
realize an atomic frequency standard at this wavelength by locking a local oscillator on a forbidden transition in 
an rf trapped calcium ion. Recent results have been obtained by using the Pound-Drever-Hall technique to lock 

to 140.000. In order to assure short- and mean-term frequency stability this cavity has to be maximally decoupled 
from its environment by several stages of vibrational and thermal isolation. The fast linewidth of the laser radiation 
is estimated from the recorded error-signal with respect to the reference cavity. Future steps will also be presented.
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We have done experiments on laser cooling and trapping of ytterbium atoms for developing an ytterbium opti-

for the second-stage cooling and 759nm for an optical lattice. The temperature and number of cold 171Yb atoms in 
399-nm MOT were 2 mK and 107 respectively. After one second, we turned off the 399-nm MOT and simultane-

from the 399-nm MOT into the 556-nm MOT. MOT. The temperature of 171Yb atoms is about 10 K with 106 atoms. 
Finally, we have successfully loaded the cold 171Yb atoms into an optical lattice with a wavelength of 759 nm. The 
lifetime and temperature of atoms in the optical lattice are measured. Now we are going to observe the 1S0 – 3P0 
clock transition by using the ultra narrow laser, developing an ytterbium optical clock. 

References 
[1] M. Takamoto, F. Hong, R. Higashi, and H. Katori, Nature 435, 321-323 (2005). 
[2] A. D. Ludlow et al., Science 319, 1805-1807 (2008). 
[3] Z. W. Barber et al., Phys. Rev. Lett. 96, 083002 (2006). 
[4] H. Jiang, G. Li and X. Xu, Optics Express, 17, 16073-16080 (2009). 
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We simulate the collisional frequency shift of optical lattice clocks based on fermions using a trapped atom 
clock on a chip [1]. At ultra-low temperatures, Pauli exclusion forbids collisions of identical fermions, making 
fermions ideal candidates for future atomic clocks and other precision measurements. But, s-wave interaction can 

frequency on the area of the 2nd pulse in Ramsey spectroscopy. We show that the fermion clock shift is inextricably 
-

tion of magnetically trapped 87Rb, which simulates fermions because all of its scattering lengths are nearly equal. 
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radiation clock shift in Yb
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and A. Derevianko3

 
 

3. Department of Physics, University of Nevada, Reno, Nevada 89557, USA  
*kyle.beloy@nist.gov 

We evaluate the dynamic correction to the black-body radiation (BBR) shift of the 6 6 6
2 1

0

3

0
s S s p P→  optical 

clock transition in Yb. This complements recent work in our laboratory which accurately characterized the BBR 
clock shift within the “static” approximation—i.e., wherein subtle effects of the spectral distribution of the ther-

the 6 6 3

0
s p P — 5 6

3

1
d s D  electric dipole matrix element, which plays a key role in the dynamic correction. This 

discrepancy has prompted us to independently determine this matrix element by two separate means. Firstly, we 
extract the matrix element by utilizing a combination of accurate experimental parameters including the magic 

-
ment of the 5 6 3

1
d s D

element obtained by these two methods are in agreement with one another, and largely validate the prior theoreti-
cal value. With this matrix element, we are able to determine the fractional clock shift to well below 1 × 10–17 for 
operation in a BBR environment at 300 K. 
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3. Istituto Nazionale di Ricerca Metrologica (INRIM), Torino, Italy  

demonstrate that this new generation of frequency standards is now fully reliable and lives up to expectations. We 
present the preliminary results showing a good agreement between our two Strontium clocks within their accuracy 
budget (1.4 × 10–16). 

light shift [1] is detailed. Secondly, we report on the second order lattice effects, observed with an unprecedented 
resolution due to the high depth of our lattices (5000 recoils). 

Finally, we compared the strontium clocks to 3 microwave fountains, thus giving the clock transition absolute 
frequency to an accuracy of 4 × 10–16 limited by the fountains. These measurements improve also by a factor 10 the 
bounds on the variation of fundamental constants given by Sr vs Cs comparisons. 
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[1] P. G. Westergaard and J. Lodewyck and L. Lorini and A. Lecallier and E. A. Burt and M. Zawada and J. Millo and P. Lemonde, 
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The recent progress in our cesium atomic fountains at National Metrology Institute of Japan (NMIJ) is pre-
sented. We have developed three fountains; NMIJ-F1, NMIJ-F2, and a truncated atomic beam fountain. NMIJ-F1 
has been the primary frequency standard with uncertainty of 4 × 10–15 since 2004. So far, we have reported the data 
to Bureau International des Poids et Mesures (BIPM) 29 times by operating NMIJ-F1 due to the progress in the 
stability and the reliability of the whole system. For last one year, the operation of NMIJ-F1 has stopped due to the 
huge earthquake and depletion of a cesium reservoir. Currently, we are working to restart NMIJ-F1. The second 
fountain, NMIJ-F2, is under construction to achieve less than 1 × 10–15 in uncertainty. NMIJ-F2 has the microwave 
cavities which are part of the vacuum vessel [1]. Moreover, the power of cooling beams for an optical molasses 
reaches 100 mW per beam. In addition, we proposed the truncated atomic beam fountain to achieve both a low col-
lisional frequency shift and high frequency stability [2].

References 
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IEEE International Frequency Control Symposium, pp. 6-8 (1998).
[2] A. Takamizawa, Y. Shirakawa, S. Yanagimachi, and T. Ikegami, “Proposal of a truncated atomic beam fountain for reduction 
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Measurement of the X1 v,N) = (0,0)-> (1,0),(2,0),(3,0),(4,0) transition frequencies of 40CaH+ molecular ions in 
a string crystal are the promising method to test the variance in the proton-to-electron mass ratio. These molecular 
ions are advantageous to be produced and localized to a single (v,N,F
in the N = 0 state. The frequency uncertainty is dominated by the statistic uncertainty and the Stark shift induced by 
the probe laser [1]. In this paper, we consider the case that the vibrational transition is induced by Raman transition. 
The Stark shift with a given Rabi frequency is minimum when the power densities of two Raman lasers are equal. 
It is also shown that the Stark shift with the saturation power density is lowest for the (v,N) = (0,0)-> (1,0) transi-
tion and it is much higher for overtone transitions. Considering also the statistic uncertainty, (v,N) = (0,0)-> (1,0) 
transition is most advantageous for precise measurement. 
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interactions in atoms and molecules
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It is postulated that the elementary particles such as electrons and quarks possess an intrinsic property known 
as the electric dipole moment (EDM), the non-zero existence of which requires a simultaneous violation of both 
parity and time-reversal symmetries. It implies, on assuming CPT invariance, an associated CP-violation and the 
latter holds an invaluable key for the understanding of the observed matter-antimatter asymmetry in the Universe. 
The intrinsic EDMs of these particles and their symmetry violating interactions manifest in enhancing the EDM 
for atoms and molecules. We have performed several high precision calculations on the EDM enhancement factors 
of the heavy paramagnetic atoms such as, Rb, Cs and Tl [1]. We have also developed, recently, the state-of-the-art 
relativistic general-order coupled-cluster program for the high precision calculations of various symmetry violating 
interactions in atoms and molecules. The details of the calculations together with the summary of the latest results, 
mainly for Fr and YbF will be presented in this conference. 

Reference 
[1] H. S. Nataraj, B. K. Sahoo, B. P. Das and D. Mukherjee Reapprisal of the Electrc Dipole Moment Enhancement Factor for 

Thallium, Phys. Rev. Lett. 106, pp. 200403-200406 (2011). 
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condensates 

Robert Lewis-Swan* and Karen Kheruntsyan

 

We present results of a theoretical proposal to test a Bell inequality with particles of non-zero mass. Using a pair 
of colliding Bose-Einstein condensates we produce correlated atoms by the process of spontaneous four-wave mix-
ing [1]. Applying experimental tools of atom-optics, such as Bragg diffraction, we are able to create an analog of the 
Rarity-Tapster two-particle interferometry experiment [2] with massive particles. Analytical models and numerical 
simulations are found to predict a successful violation of a CHSH version of Bell’s inequality in experimentally 
accessible parameter regimes. The violation is restricted to small occupations of the scattered modes and assumes 

References 
[1] J. G. Rarity and P. R. Tapster, “Experimental violation of Bell’s inequality based on phase and momentum”, Phys. Rev. Lett. 

64, 2495, (1990). 
[2] A. Perrin, C. M. Savage, D. Boiron, V. Krachmalnicoff, C. I. Westbrook and K. V. Kheruntsyan “Experimental violation of 

Bell’s inequality based on phase and momentum”, Phys. Rev. Lett. 64, 2495, (1990). 
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Throughout the past several years our group has been engaged in radio frequency spectroscopy measurements 
-

and the effective contribution by other states to the ac-Stark shift to 4(3) [Hz cm2 2]. Along with the known energy 
structure we use the latter result to estimate black-body-radiation induced Stark shifts. We estimate that ac-Stark 
related effects contribute to systematic uncertainties below the 100 mHz level, relating to a fractional sensitivity 
better than / = ⋅ /−

5 10
17
yr. 

Reference 
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precision calculations for lithium
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Improved nonrelativistic energy bounds for the low-lying states of lithium are presented using the variation-

– 7.478 060 323 910 147(1) a.u. for 1s22s 2S, –7.354 098 421 444 37(1) a.u. for 1s23s 2S, –7.318 530 845 998 91(1) 
a.u. for 1s24s 2S, –7.410 156 532 652 4(1) a.u. for 1s22p 2P, and –7.335 523 543 524 688(3) a.u. for 1s23d 2D. These 
results represent the most accurate nonrelativistic energies in the literature. The completeness of the angular mo-

the effect of differentcoupling schemes. In particular, the so-called second spin function (i.e. coupled to form an 

of spin-dependent operators such as the Fermi contact term (but not higher-order perturbations). This resolves a 
long-standing controversy concerning the completeness of the spin-coupling terms. 

Research support by NSERC, SHARCNET, ACEnet, and the NNSF of China under Grant No. 10874133 are 
gratefully acknowledged. 
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has remained largely unexplored because of its weaker effect compared to the leading magnetic dipole and electric 
quadrupole moments. However, the long lived 3P2 state in atoms such as Yb and several alkaline-earth metals, 
with its large angular momentum, is a potentially useful probe to observe this moment [1]. We use dipole-allowed 
transitions to pump atoms into the metastable 3P2

transitions on the 3P2
3S1 line. We measure the frequencies with our well-developed technique of using a Rb-

A (magnetic dipole) and  (electric 

magnetic octupole constant C
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The aim of our experiment is a new determination of the proton charge radius Rp from high precision hydrogen 
measurements. The proton is the simplest stable hadronic system and a precise knowledge of its properties has fun-

scattering (Rp = 0.895 (18) fm), hydrogen spectroscopy (Rp = 0.8760 (78) fm) and muonic hydrogen spectroscopy 
(Rp = 0.84184 (67) fm).

There is a clear discrepancy between the new value deduced from the muonic hydrogen spectroscopy and the 
previous ones. The aim of our project is to measure the absolute optical frequencies of two transitions in hydrogen, 

source at 205 nm is developed at LKB. This radiation is generated by sum frequency. We are developing two sepa-
rate ring cavities (at 894nm and 266nm) whose optical paths overlap in a Brewster-cut BBO crystal. The objective 

Reference 
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Eur. Phys. J. D 60 (2010) 243. 



294 Th-027 Precision measurements…

N. E. Bulleid1, S. M. Skoff1, R. J. Hendricks1, M. R. Tarbutt1, B. E. Sauer1, S. A. Meek2,  
G. Meijer2, A. Osterwalder3, D. M. Segal1, and E. A. Hinds1

 
 

 
3. Ecole Polytechnique Federale de Lausanne, Institut des Sciences de Ingenierie Chimiques,  

Slow-moving, intense beams of YbF molecules have been created using buffer gas cooling and Stark decelera-
tion. In the buffer gas method hot molecules produced by laser ablation of a solid target thermalise with cold helium 

10 mol-

the YbF molecules in a trap which travels with a velocity equal to the beam. The trap is then decelerated to reduce 
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It is well known that the existence of an electron electric dipole moment (eEDM) would violate time reversal 
symmetry. The Standard Model predicts an eEDM less than 10–38 e.cm, however many popular extensions predict 
values in the range 10–29 – 10–24 e.cm. Our experiment currently has the potential to measure eEDMs down to ap-
proximately 10–29 e.cm, making it a precise probe for T-violation and physics beyond the Standard Model. 

of YbF. The molecules are prepared such that the molecular spin is oriented perpendicular to an applied strong 

period. We measure this angle of rotation, which is directly proportional to the eEDM. 
We report our current technique in more detail and present our most recent world leading result [1]. 
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A permanent electric dipole moment (EDM) in an elementary particle indicates the violation of the time-reversal (T) 
symmetry, whose evolution mechanism is important to understand the baryon asymmetry in the universe. In paramagnetic 
atoms, an electron EDM results in an atomic EDM enhanced by the atomic number Z. Francium (Fr, Z = 87), which is 
the radioactive element, has the largest Z in alkali atoms and has the large enhancement factor of around 900. Laser cool-
ing and trapping technique suppresses the systematic errors caused by the effects of v × E and inhomogeneous external 

210Fr (t  = 3.2 min) with a nuclear fusion reaction 
18 197 210

5O Au Fr n+ → +  using 100 MeV 18O beam accelerated by the AVF cyclotron. Produced Fr is released as a Fr ion 

the ionizer when the Au target is melted. 
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The ASACUSA collaboration was succeeded in synthesizing cold antihydrogen atoms employing a cusp trap [1]. Al-

such extracted antihydrogen beam together with a microwave cavity and a sextupole magnet in order to make a stringent 
test of the CPT symmetry. We recently obtained candidate signals from extracted cold antihydrogen beam, which has been 
making a path to realize the above measurement. 
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Cold antihydrogen has been produced and, since 2010, trapped by the ALPHA (Antihydrogen Laser Phys-
 

1000 seconds [2], enabling further studies, including microwave and laser spectroscopy. Recently, microwave 

levels of the positronic ground state [3]. Such transitions lead the antiatom to be ejected from the magnetic trap. 
After applying radiation, the number of the antiatoms remaining in the trap were counted. When the radiation was 
on resonance, 0.02 antiatoms per experimental cycle were detected, compared to 0.21 when off resonance.

References 
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is a hydrogen-like bound state of leptons, and its HFS is a good probe for testing QED theory. The muon mass m  
 which are fundamental constants of muon have been so-far determined by the muonium 

HFS experiment at LAMPF [1]. The high intensity beam soon to be available at J-PARC allows one order of mag-
nitude more accurate determination of those constants, which also plays an important role in the new measurement 
of anomalous magnet monment. 
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We are constructing the francium trapping facility at TRIUMF and we planning on a commissioning run in 
9-2012. Fr is an ideal atom for atomic spectroscopy studies of the weak interaction due to its high nuclear charge 

on the spatial distribution of the nuclear magnetization. The anapole moment dominates the nuclear spin dependent 
part of the PNC electron-nucleus interaction and allows the study of the weak interaction inside the nucleus. The 
optical PNC measurement of nuclear spin independent PNC is sensitive to physics beyond the standard model. 
Work supported by NSERC and NRC from Canada, NSF and DOE from USA.

Precision measurements… Th-034

M. Awobode

Department of Physics, University of Ibadan, Ibadan, Nigeria 

We consider a possible correction to the orbital magnetic moment of bound electrons. In condensed matter 
-

gate the possibility of detecting, by means of enhanced Atomic Beam Resonance Zeeman technique, the corrections 
to the orbital magnetic moment of the atomic electrons. It is suggested that the correction may be best observed in 
alkali metal atoms.
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We investigate Gaussian potentials by solving the time-independent Schrödinger equation directly, and obtain 
a number of empiric relationships between the number of states, their energies and the potential depth, potential 
width and particle mass. 

3He in a dipole trap, formed 
by a pair of crossed laser beams [1]. They found that the number of trapped atoms was remarkably constant over 
multiple instances of the same experiment at low laser power. We interpret this as caused by every available state of 

At the conference, we will compare our results with the experimental data, and discuss analytical approximations 
to the density of states. 
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A number of extensions of the standard model of particle physics predict electric dipole moments (EDM) of 
particles that may be observable with the present state-of-the art experiments making EDM studies a remarkable 
tool in search for new physics. The electron EDM is enhanced in certain atomic and molecular systems, and two 
of the most stringent limits on the electron EDM de were obtained from the experiments with 205Tl [Regan et al., 
PRL 88, 071805 (2002)], and with YbF molecule [Hudson et al., Nature 473, 493 (2011)]. Both results crucially 

E0, E KE
eff

=
0
, and d Kd

e
( )205Tl = . The goal of this work is to resolve the 

present controversy in the value of the EDM enhancement factor K in Tl. We have carried our several calculations 

than the recently published result of Nataraj et al. [Phys. Rev. Lett. 106, 200403 (2011)], but agrees very well with 
several earlier results. 
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In alkali diatomic molecules containing heavy heteronuclear atoms the lowest excited A1 + and b3

to the strong spin-orbit interaction, are strongly coupled. These fully mixed states can’t be separated and thus need 
to be considered as a single A1 +-b3

4-chaneldeperturbation model. In the experiment A-b complex is studied using either direct excitation by diode 
lasers, or excitation of the (4)1 + 1 +

spectra were recorded by Fourier transform spectrometer Bruker IFS 125HR with the resolution of 0.03 – 0.05 cm–1. 
More than 4600 A-b complex term values for 85Rb133Cs were obtained in energy range E  [10066,12857] cm–1). 
Elaborated deperturbation model reproduces data with experimental accuracy (better than 0.01 cm–1). 
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Fellows , Spectroscopic data, spin-orbit functions, and revised analysis of strong perturbative interactions for the A1 + and 
b3  states of RbCs, Physical Review A 81, 042511 (2010). 
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dense atom space (volume) coverage has been developed. Using six mirrors, we demonstrate a path-length of 

mirrors with angles ≤ 0.05 radians. Spectrally resolved absorption measurements in the near IR of the greenhouse 
gases CO2, CO, and CH4

using a spectrum analyzer and showed rovibrational resolution and a sensitivity of a few ten ppmv. The optical 
apparatus is portable and can be used for a wide range of applications, including environmental monitoring, com-
bustion processes, medical diagnostics, and fundamental atomic and molecular physics studies. This research is 
supported by the Qatar Foundation under the NPRP grant 09 - 585 - 1 – 087.
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opal of glass nanospheres, in a regime where the production of clusters is negligible. With a vapour cell whose 
-

optical spectrum, for a large range of acceptance angles, including very oblique incidence (~ 30-50°). These narrow 

in the optical frequency range. These narrow structures allow envisioning compact optical frequency references; 
moreover, the linearity of the technique offers applicability to weak molecular lines. 
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k . For 
this purpose k  must be determined with an uncertainty at the ppm level. Precision laser spectroscopy applied to an 

k  by 
laser spectroscopy [1]. Spectra recorded are analyzed with various models that take into account Dicke narrowing 
or speed-dependant effects of collisional parameters. 

k  with a competitive uncertainty of a few ppm is reach-
able [2]. It will then be worthily compared the value obtained by the acoustic method and thus hopefully contribute 

k  determined by the Committee on Data for Science and Technology (CODATA).
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We present a very compact, robust, and narrow linewidth extended cavity diode laser (ECDL) for precision 
quantum optics applications in space or in a micro-gravity environment. It will be used for Rubidium BEC and 
atom interferometry experiments on board a sounding rocket to be launched in 2013. The micro-integrated ECDL 

chip, micro-optics, and electronical components are integrated on a structured aluminum nitride ceramic body that 
only weights 40 grams and takes up a voulme of 30 cm3. The ECDL provides a continuous tuneability of more than 
30 GHz by synchronizing the temperature of the VHBG and the injection current. In heterodyne beat note measure-
ments we have demonstrated an intrinsic linewidth of 300 Hz full-width-at-half-maximum (FWHM) and 60 kHz 
FWHM short term (170 µs) linewidth (including technical noise) at an output power of 35 mW. We further report 
on results of mechanical vibration tests that simulate the mechanical load of a sounding rocket launch.
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Recently, the cooperative Lamb shift (CLS) phenomenon was shown to play a prominent role for the explana-
tion of the frequency shift observed in single-photon superradiance [1] and in an atomic vapor layer with tunable 
thickness and atomic density [2]. Here, we report on a four-wave mixing process in Rb vapor where three-photon 

a suppression of the generated signal occurs near the unperturbed three-photon resonance; notwithstanding, a large 

destructive interference between different pathways induced by the incident beams and by the four-wave-mixing 

where the shifted resonance is near the frequency required for phase matching [3]. 
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Using noise espectroscopy, we studied the correlation between two laser beams with opposite circular polariza-
tions, coupling the transition 5

1 2
2S F/ =  to 5

3 2
2P F/ ′ =  in Electromagnetically Induced Transparency (EIT), using 

cold atoms of 85Rb. We observed the transition from correlation to anti-correlation, between the probe and control 
beams, when their intensity was increased [1,2]. The cross-correlation spectra, contrary to the mean value of the 
intensities, shows a EIT peak, that is free of power broadening [4], which experimentally allows the direct measure-
ment of coherence time between the ground states in EIT condition. The Phase Difusion model [3] applied to EIT 

correlation as a more accurated characterization property than the mean value of intensity. 
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In the last decade, it has been found that some discrete doubly excited states (DES) embedded in continuum, 
like the 2p3d (1Po

both non-relativistic and relativistic calculations for the transitions of several DES of helium-like Cl. Our present 
1Po) state of Cl15+ is still almost 10 times larger than 

1Po) state of 

(1Po 1De) transition is in excellent agreement with those of the observed values of Cl15+. 
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We propose to use a spin-polarized, non-interacting, degenerate 6Li gas mixed with 87Rb atoms to generate cou-
pling between distant bosons due to successive interspecies scattering. The interaction has R–4 spatial dependence. 
Unlike the dipole-dipole interaction, the strength of the fermion mediated Bose-Bose interaction can be either at-
tractive or repulsive with the help of interspecies Feshbach resonances. The loss process due to three-body recom-
bination will greatly be suppressed in the Mott phase of bosons. A mixture of heavy bosons and light fermions is 
ideal because a lattice will localize bosons while fermions can move freely. We further investigate schemes to cre-
ate supersolid and quantum magnetic phases in bosons with the help of the fermion mediated interactions. We are 
engaged in building an apparatus to produce the mixtures of degenerate 87Rb and 6Li gases. Currently the machine 
is commissioning the 87Rb BEC and DFG of 6Li is in the pipeline. We are studying topological defect formation by 
Kibble-Zurek mechanism in 87Rb spinor BEC at the F
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Phase space theories where highly occupied condensate modes and mainly unoccupied non-condensate modes 
are respectively treated via a hybrid double space Wigner and positive P distribution functional, have been devel-
oped [1,2], and may be applied to various BEC evolution problems, such as BEC interferometry experiments with 
interacting bosonic atoms in time varying double well traps at very low temperatures [1]. The present paper extends 

References 
[1] B. J. Dalton, “Theory of Decoherence in BEC Interferometry”, J. Phys. Conf. Ser. 67

Effects in BEC Interferometry, I General Theory”, Ann. Phys. 326, pp. 668-720 (2011).
[2] S. E. Hoffmann, J. F. Corney and P. D. Drummond, “Hybrid Phase-Space Simulation Method for Interacting Bose Fields”, 

Phys. Rev. A 78



304 Th-047 Bose gases

Tim Langen1,*, Michael Gring1, Maximilian Kuhnert1, Bernhard Rauer1,  
Igor Mazets1, David A. Smithript1, Remi Geiger1, Takuya Kitagawa2,  

Eugene Demler2, and Jörg Schmiedmayer1

1. Vienna Center for Quantum Science and Technology,  
 

2. Harvard-MIT Center for Ultracold Atoms, Department of Physics,  
Harvard University, Cambridge, Massachusetts 02138, USA  

*tlangen@ati.ac.at 

Understanding relaxation processes is an important unsolved problem in many areas of physics. A key chal-
lenge in studying such non-equilibrium dynamics is the scarcity of experimental tools for characterizing their 
complex transient states. We employ measurements of full quantum mechanical probability distributions of matter-
wave interference to study the relaxation dynamics of a coherently split one-dimensional Bose gas and obtain 
unprecedented information about the dynamical states of the system. Following an initial rapid evolution, the full 
distributions reveal the approach towards a thermal-like steady state characterized by an effective temperature that 
is independent from the initial equilibrium temperature of the system before the splitting process. We conjecture 
that this state can be described through a generalized Gibbs ensemble and associate it with pre-thermalization.
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Quantum many-body dynamics, such as they are observed in experiments with ultracold atoms, rely on the 
inter-particle interaction as well as on exchange effects induced by the bosonic or fermionic nature of the particles. 
The interplay of these phenomena is studied here by means of a mixture of several species that do not differ in 
their physical properties. The total population imbalance of such a bosonic mixture in the double-well can be de-

total particle number. The self-trapping or oscillating behavior of the mixture can thus be tuned to a wide extent by 
the population balance of the two species. The approach is extended to general Bose-Hubbard systems and to their 

components that weakly differ in their physical properties. 



Bose gases Th-049 305

condensates

Robert W. Pattinson1,*, Thomas P. Billam2, Simon A. Gardiner2, Daniel J. McCarron2,  
Hung-Wen Cho2, Simon L. Cornish2, Nick G. Parker1, and Nick P. Proukakis1

 
 

 
Durham, DH1 3LE, UK  

In a recent experiment [1] a two-species condensate was formed via sympathetic cooling and three distinct 
regimes of density distributions observed depending on atom numbers. To reproduce these theoretically, we inves-

-
tive to experimentally relevant shifts in the potentials in both longitudinal and transverse directions and observe a 

agreement for all regimes. Due to rapid sympathetic cooling, condensate growth likely plays an important role, an 

Reference 
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The realization of dual-species Bose-Einstein condensate (BEC) of 87Rb and 133Cs using sympathetic cooling 
were reported by McCarron et al. -
cluding the ball(Cs)-shell(Rb), ball(Rb)-shell(Cs) and asymmetric phases, due to the immiscible interaction condi-
tion [1,2]. In this presentation, we employ the stochastic projected Gross-Pitaevskii equation (SPGPE) to simulate 
the growth of dual-species condensate [3] during the cooling. The numerical results based on the SPGPE method 

will, eventually, either evolve to the asymmetric phase, or one of the two species become stillborn. 
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sound modes provide the ultimate energy sink in the system, quantized vortices undergo decay via emission of 
sound waves during their acceleration or a reconnection event. 

sound to re-interact with the vortex. We demonstrate that the non-trivial vortex-sound interactions, including emis-
-

ted by each precessing vortex can be driven into the opposing vortex. This “cross-talk” leads to a periodic exchange 

and should be experimentally observable at low temperatures as a migration of the vortex to higher density over 
a few precession periods. Similar effects can be controllably engineered by introducing a precessing obstacle into 
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-
densate. In the absence of a thermal cloud, it is well understood the vortex rotates at a constant radius, as recently 

it to a gradual decay. By an extension of earlier work [2], we perform a detailed quantitative study of the role of 
the dynamics of the thermal cloud on the experimentally-relevant quantities of vortex decay rate and precession 
frequency, highlighting the importance of the various collisional processes involved. We model the system by a dis-
sipative Gross-Pitaevskii equation for the condensate, self-consistently coupled to a quantum Boltzmann equation 
for the thermal modes, which additionally includes collisional processes which transfer atoms between these two 
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Recently, new thermodynamic methods applied to cold atoms have permitted the precise measurement of the 
equation of state of strongly interacting Fermi gases. In contrast to fermions, experiments on strongly interacting 
Bose gases are limited due to three-body losses. In the low temperature regime, interactions between ultra-cold 

a. In 1996, an a4 dependence on the atomic 
three-body recombination loss rate L3

the recombination rate is imposed at unitarity, where ( )k a| | →−1 0 , such that L3 does not diverge [2]. We will 
introduce existing theoretical predictions of temperature-dependence of the unitarity-limited, three-body loss rate. 
Furthermore, we will present measurements of the variation of the three-body loss rate with temperature, that clari-

thermodynamics [3]. 
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Recent experiments [1] have engineered spin-obit (SO) coupling in a neutral atomic Bose-Einstein condensate 
through the dressing of two atomic spin states with a pair of lasers. This has led to an interest in the application of 
these systems, such as for spintronic devices. The addition of rotation to the system adds non-trivial topological de-

interactions. Through a Thomas-Fermi approximation and working in the non-linear sigma model formalism, we 
-

sults up with a series of numerical simulations on the full Gross-Pitaevskii equation. In particular, these simulations 

rotation frequency and the interaction strengths. 
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We investigate the stationary states of spin-1 Bose-Einstein condensates in the presence of Rashba–Dressel-
haus-type spin-orbit coupling. Previously this coupling has been predicted to generate exotic ground-state struc-
tures. We numerically study the energies of various stationary states as functions of the spin-orbit coupling strength 
and determine the ground states of the condensates. Our results indicate that for strong spin-orbit coupling, the 
ground state is a square vortex lattice, irrespective of the value of the spin-spin coupling. For weak spin-orbit cou-
pling, the lowest-energy state may host a single vortex. Furthermore, starting from the homogeneous approxima-
tion, we analytically derive constraints that explain why certain stationary states do not emerge as ground states. 

spin-independent absorption imaging. 
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In experiments with Bose-Einstein condensates we have demonstrated that in direct analogy with lasers, BECs 
possess long range coherence to at least third order [1]. This analogy with light extends to incoherent sources where 
the presence of atom bunching in second order correlations (the Hanbury Brown – Twiss effect) is characteristic 
of matter wave speckle [2]. In these experiments we make use of the ability to detect single atoms of helium in 
the metastable 23S1 state which allow direct determination of the quantum statistics [3]. Most recently, we have 
investigated higher order correlations in a one-dimensional Bose gas. In such a system the transverse dimension 
can condense before full 3-D condensation resulting in a multi-mode condensate. Such a gas exhibits almost perfect 
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We study superradiant scattering from a Bose-Einstein condensate using a pump laser incident at variable angle 
and show the presence of asymmetrically populated scattering modes. Experimental data reveal that the direction 

with numerical simulations based on coupled Maxwell-Schrodinger equations. Our study complements the gap of 
previous work in which the pump laser was applied only along the short axis or the long axis of a condensate, and 
extends our knowledge about cooperative scattering processes [1]. Based on this analysis, by a coherent Bragg 
diffraction method we measure the multiband energy structures of single-particle excitations , which reveal the 
interaction effect through the whole range of lattice depths [2].
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cannot undergo a conventional phase transition associated to the breaking of a continuous symmetry. Nevertheless 
they may exhibit a phase transition to a state with quasi-long range order via the Berezinskii-Kosterlitz-Thouless 

atomic gases constitute versatile systems in which the 2D quasi-long range coherence and the microscopic nature 

central, highly degenerate region if the velocity of the obstacle is below a critical value. 
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We investigate the collision of oblique dark solitons in the two-dimensional supersonic nonlinear Schrödinger 

collision in the one-dimensional case. We observe that the collision is practically elastic and we measure the shifts 
of the solitons positions after their interaction. The numerical results are in agreement with hydrodynamical ap-

obstacle like the recent experiments with Bose gases and exciton-polaritons. 
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The three-dimensional (3D) skyrmion in multi-component Bose-Einstein condensates (BECs) has attracted 

3(S 3) = ℤ. However, its evidence 

spatially modulated ground states. Here, we clarify that a 3D skyrmion spontaneously emerges as a “ground state” 

understanding [2]. 
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Although we often picture the quantum vacuum as containing virtual quanta whose observable effects are only 

boundary conditions are suddenly changed [1]. Thus the ’dynamical Casimir effect’ results in the spontaneous gen-
eration of photon pairs in an empty cavity whose boundaries are rapidly moving. Bose Einstein condensates are at-
tractive candidates in which to study acoustic analogs to such phenomena [2], because their low temperatures prom-
ise to reveal quantum effects. Here we exhibit an acoustic analog to the dynamical Casimir effect by modulating the 

and particle-like, are excited by this modulation in a process that formally resembles parametric down conversion. 
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We study theoretically an analogous phenomenon of brane–anti-brane annihilation in two-component Bose-
Einstein condensates. In brane cosmology, the Big Bang is hypothesized to occur by the brane–anti-brane annihila-
tion and the instability of this system is explained by the concept of the ‘tachyon condensation’. We construct an 

domain walls [1]. This defect creation process and subsequent relaxation dynamics can be understood as the phase 
ordering dynamics in a restricted lower dimensional space. We also discuss a new mechanism to create a ‘vorton’ 
(3D skyrmion) in the brane–anti-brane annihilation process [2]. All theoretical analyses are supported by the nu-
merical simulations of the Gross-Pitaevskii equation. 
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We present a possible scheme for creating and detecting entangled states in momentum space for neutral meta-
stable Helium (He*) atoms. 

Starting from a Bose-Einstein condensate (BEC) one can induce collisions between atoms to create entangled 
atom pairs. Very close to the original proposal by Einstein, Podolski and Rosen, those pairs are anti-correlated in 
their motional degree of freedom. 

The possibility to detect individual He* atoms with a position resolved micro-channel plate (MCP) detector 
opens up the way for experiments to proof that the atoms are actually entangled, for example in a double double-slit 
experiment. We analyze requirements and restrictions for such an experiment, for example on detector resolution 
and source size, and show that it should be in principle achievable in our current setup. 
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The one-dimensional (1D) Bose gas has emerged as a paradigm system in quantum many-body physics that al-
lows unique opportunities for comparing experiment and theory. Experiments on atom chips allow direct measure-
ments of the momentum distribution of a trapped 1D Bose gas [1]. We describe how these results can be compared 

description of the full momentum distribution measurements, and (ii) exact solutions for the thermodynamics, 
obtained from the Yang-Yang equations (thermodynamic Bethe Ansatz) yield the root-mean-square width of the 

-
lent agreement. These results open up interesting prospects for probing and characterizing more strongly correlated 
regimes via Yang-Yang kinetic-energy thermometry. 
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Quantum technology embraces a broad range of emerging technologies which have witnessed remarkable 
progress in recent years, thanks to a steadily increasing degree of control of complex systems at the quantum level. 
Solid-state devices are the most promising candidates for scalable implementation of quantum electronics. On the 
other hand, ultra-cold atoms constitute the most sensitive and robust laboratory system to study and control coher-

way interface between cold atoms and solid-state systems in order to pursue a novel route towards hybrid quantum 

a breakthrough in the application of ultra-cold atomic systems for semiconductor based magnetic sensing. At the 
same time, it will provide an unprecedented level of both spatial and magnetic resolution to achieve a micro- and 
nano-scale characterisation of magnetic domains in semiconductors.
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Spinor condensates present a unique arena for the study of quantum phase transitions and dynamical behavior 
close to critical points. In this work we report spontaneous spin domain formation in sodium Bose-Einstein con-
densates that are quenched, i.e. rapidly tuned, through a quantum phase transition from polar to antiferromagnetic 

mF = ±1 energy levels, inducing a dynamical instability recently uncovered by our group [1]. We use local spin 
measurements to quantify the spatial ordering kinetics in the vicinity of the phase transition. For an elongated BEC, 
the instability nucleates small antiferromagnetic domains near the center of the polar condensate that grow in time 
along one spatial dimension. After a rapid nucleation and coarsening phase, the system exhibits long timescale non-
equilibrium dynamics without relaxing to a uniform antiferromagnetic phase.
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Spin currents, which form the basis of spintronics, are subject to strong damping due to collisions between spin 
species. This phenomenon is known as spin drag. We have performed spin drag experiments for bosonic ultra-cold 
atoms in the condensed and non-condensed phase. We prepare an equal mixture of pseudo spin up and  atoms 
and apply a force on only one of the species. As a result a constant drift velocity between the spin species develops, 
which is a measure of spin drag. Close to the quantum phase transition to BEC we observe a strong increase of spin 
drag due to Bose enhancement acting as a precursor for Bose-Einstein condensation1. This is in agreement with 

condensed phase. Our results pave the way for studies of transport properties of degenerate bosons that are very 
different from fermionic systems.

Reference 
[1] S. B. Koller et al.
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We show that the solutions of the Gross-Pitaevskii equation (GPE) exhibit wave chaos for a wide range of ex-
ternal potentials including disorder potentials and periodic lattices. In the presence of wave chaos two almost identi-

-
tion between wave chaos and the depletion of the BEC which reveals that wave chaos marks the breakdown of the 

(MCTDHB). Our results indicate that even in systems where previously good agreement of GPE predictions with 
experiment has been found, interesting many-body dynamics is present and has so far not been fully appreciated. 
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84Sr, and degen-
eracy of the other three stable isotopes followed soon afterwards. Since then, we have expanded our capabilities 
to prepare for future experiments, including the study of novel schemes of quantum simulation, creation of alkali-
alkaline earth molecules, and precision measurements. In particular, we have improved the number of atoms in 
the 84Sr BEC to above 107

mixtures of both fermions and bosons. We have established a scheme to manipulate and detect the spin states of the 
fermionic isotope 87

implemented an optical lattice, which we used to create ultracold Sr2 molecules in the electronic ground state (see 
companion poster by B. Pasquiou). Our efforts culminate in the development of a novel optical cooling scheme (see 
companion contribution by F. Schreck). These studies show the maturation of experimental techniques for degener-
ate gases of strontium, leading up to unique applications that are anticipated in the near future. A selection of these 
studieswill be presented on the poster. 
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Using the ability to tune the interaction strength in a harmonically trapped ultracold Bose gas of 39K atoms we 
study non-equilibrium phenomena in Bose-Einstein Condensates. 

(1) By quenching the strength of interactions in a partially condensed Bose gas we create a “super-saturated” 
vapor which has more thermal atoms than it can contain in equilibrium. Subsequently, the number of condensed 
atoms (N0) grows even though thetemperature (T) rises and the total atom number decays. We show that the non-
equilibrium evolution of the system is isoenergetic and for small initial N0 observe a clear separation between T and 
N0 dynamics, thus explicitly demonstrating the theoretically expected “two-step” picture of condensate growth. For 
increasing initial N0 values we observe a crossover to classical relaxation dynamics [1]. 

(2) At low interaction strengths we show that decoupling from the thermal bath can lead to “superheated” con-
densates which survive at temperatures up to almost twice the equilibrium transition temperature. We study both 
how this phenomena depends on theinteraction strength and also the subsequent dynamics of the condensate decay 
which can be induced by rapidly increasing the interaction strength. 

Reference 
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Elastic Rayleigh scattering of photons from atoms in a Bose-Einstein condensate (BEC) creates long-lived 
ripples in the density distribution of the atomic cloud. Bosonic stimulation leads to a positive feedback mechanism 
enhancing the formation of a matter-wave grating. This directed Rayleigh scattering is well known as Rayleigh 
superradiance, and recently it has been shown to depend asymmetrically on the sign of the pump light detuning [1]. 
Here we experimentally demonstrate this detuning asymmetry in the threshold, and present a model that explains 
the source of the surprising asymmetry. We attribute the threshold increase to excitation onto repulsive molecular 
potentials followed by emission of resonant photons. The matter-wave coherence is strongly inhibited by those 
resonant photons [2]. 
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The system of cold neutral atomic gas has recently attracted attentions, because there the time scales of thermal 

equations for the gases have been derived in nonequilibrium TFD [2, 3]. We here extend our previous work to the 
-

investigate the thermal process for the system after a sudden displacement of the former potential, analyzing the 
quantum transport equation numerically. 
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x for the degen-
erate ideal Bose gas. The equation of state is p BS= /5 3, where p is the pressure, S is the entropy per unit volume (  
= const). We obtain two splitting pair of equations. The second set is 

 
 ∂ / ∂ + ∂ / ∂ =v t v v x

S S S
0  

 ∂ / ∂ + ∂ / ∂ + ∂ / ∂ =R t R v x v R x
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0  

where vS R AS= − ,  is the density (A = const). The Riemann problems with the 
initial values ( )0 0, =x , S x S( )0 0, =  ( 0 0, −S const) and v x v x

S
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1 2
>  lead 

to an unstable solution where the density becomes unbounded by analogy to [1], [2], [3]. Although equation of 
two-component hydrodynamic is not applicable to ideal degenerated Bose gas, obtained solutions may be treated 
as limit ones for non-ideal gas. 
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We present an exact many body description of small mixtures of two ultracold bosonic species in a one-dimen-
sional trap that permit us to study the case in which they are in different correlation regimes. Within this framework 
we obtain the criteria for phase separation when either both species form Bose-Einstein condensates (BEC) or when 
one of them is in the Tonks-Girardeau limit. For the second case we compare our description with the semiclassi-

model to describe dynamics as well as quantum correlations between both species. The atoms in the Girardeau 
gas act as impurities submerged in the BEC, and we investigate the effects the condensed environment has on the 
Girardeau gas as a function of the interspecies scattering strength. 
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Using a numerical implementation of the truncated Wigner approximation, we simulate the experiment re-
ported by Ramanathan et al. in Phys. Rev. Lett. 106, 130401 (2011), in which a Bose-Einstein condensate is created 
in a toroidal trap and set into rotation via a Gauss-Laguerre beam. A potential barrier is then placed in the trap to 

be visualized as vortices crossing the barrier region in radial direction. Adopting the notion of critical velocity used 
in the experiment, we determine it to be lower than the local speed of sound at the barrier. This result is in agree-
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a Berezinskii-Kosterlitz-Thouless type transition in which the interactions between particles are playing a crucial 
role. We have studied this transition through the emergence of phase coherence in the momentum distribution [1]. 

superconductors. Experimentally we study how microscopically correlated disorder changes the coherence proper-

Our study is an experimental realization of the dirty boson problem in a well controlled atomic system suitable for 
quantitative analysis. 
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spectroscopy to measure the excitation spectrum of a trapped spin-polarized degenerate quantum gas made chro-
mium atoms (Cr-BEC). Spectra are recorded for orthogonal orientations of the spin with respect to the trap axes. 
The dipolar interactions between the atoms induce an anisotropy of the sound velocity inside the BEC. As we span 
the frequency domain from the phonon range up to the single-particle range, the excitation energy is clearly dif-
ferent for parallel and perpendicular orientations of the excitation wave-vector with respect to the spin. This work 
complements previously published studies of the collective excitations of the chromium BEC [1]. We plan to use 
this scheme to deepen our understanding of the magnetization processes in the multicomponent spin-3 chromium 
condensate with special interest for 2D and 1D systems [2, 3].
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(atomic) and external (lattice) degrees of freedom controls the two body inelastic collision process. In a 3D lattice, 
relaxation of atoms initially in the highest Zeeman state is almost suppressed. However, we observe resonances cor-
responding to particular combination of Zeeman energy and vibrational lattice spacing. We performed the spectros-

of the dipolar interaction. By focusing our attention on the lowest energy excitation peak we found that its shape is 
sensitive to the interaction energy in each lattice site, and that it can be used as a global probe of the mean site oc-
cupation distribution. With such a probe, we studied how the mean site occupation distribution changes as we vary 
the loading ramp speed of the lattice. Finally we studied lattice magnetism in the ground state of a 3D optical lattice 
and observed a spontaneous depolarization of the BEC when the onsite interactions overwhelm the Zeeman effect.
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-
ity problems caused by the head-to-tail alignment of dipoles in three dimensions [1]. To investigate the anisotropic 

-

different vortex structures depending on the polarization angle of the dipoles and on the relative strength between 
the dipolar and the contact interactions. 
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This poster will present the design and the current status of our experimental apparatus for the all-optical pro-
duction of a quantum degenerate mixture of Li and Cs atoms. 

From this starting point, ultracold LiCs molecules can be created via Feshbach association and subsequent 
Stimulated Raman Adiabatic Passage, which transfers the molecules to the ground state. In this state the molecules 
exhibit a very large dipole moment of 5.5 Debye [1], which enables the investigation of dipolar physics in ultracold 
gases.

-

resonances.
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from analogy of conventional Bose-Einstein condensates (BEC) to nonlinear Kerr media. Whereas, dipolar BECs 
are like asymmetric nonlocal nonlinear media, and thus can be used for studying quantum matter wave optics 
beyond Kerr nonlinear quantum optics. Now,we investigate spontaneous four-wave mixing of two colliding di-
polar BECs. A deformed halo of the scattered dipoles leads to directional correlated dipolar pairs, which could be 
controlled with the alignment of the dipoles. Further analysis shows that back-to-back dipole pairs have anisotro-
pic Einstein – Podolsky – Rosen correlation, which can be used in quantum metrology and quantum mechanics 
foundation test. 
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Since the realization of BEC of 52Cr atomic gases with large magnetic dipole moments [1], dipolar quantum 
gases have attracted much attention. Recently, experimentalists have tried to produce heteronuclear polar molecules 
with large electric dipole moments. The anisotropic and long-range nature of a dipole-dipole interaction leads to 
various properties. Especially, dipolar fermi gases have two fundamental phenomena, i.e., fermi surface deforma-

which affects the the equilibrium and the dynamic properties, as well as the stability of the system. Anisotropic 

anisotropic BCS pairing associated with the dipole-dipole interaction.
In this work, we study the properties of dipolar fermi gases. Including the deformation of the Fermi surface, we 

clarify the characteristic features caused by anisotropic dipole-dipole interaction.
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We measure the equation of state of a Fermi gas with unitary interactions [1]. We use a novel method that re-

precision measurement of the thermodynamics provide a benchmark for many-body theories on strongly interact-
ing fermions, relevant for problems ranging from high-Tc superconductivity to the equation of state of neutron stars. 
In a separate experiment, we study the binding energy of fermion pairs in the crossover from three to two dimen-
sions [2]. Dimensionality is tuned by varying the depth of a one-dimensional optical lattice imposed on a gas of 6Li 
atoms. The binding energy is measured as a function of lattice depth and interaction strength and compared with 
theoretical predictions. 
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Ultracold atoms have been proven to be an ideal table-top system to reveal novel states of quantum matter. 
The latest development of generating a synthetic spin-orbit coupling (SOC) in ultracold atoms has created a new 
frontier that is endowed with a strong interdisciplinary character and a close connection to new functional materi-
als - topological insulators. Here, we report our theoretical work on spin-orbit-coupled ultracold atomic gases. For 
Fermi gases, we predict a new anisotropic state of matter which consists of exotic quasi-particles with anisotropic 

single-particle spectral function and spin structure factor, easily detectable in current experiments [1]. For Bose-
Einstein condensates, we show that the interplay between the SOC and inter-atomic interaction leads to a very rich 
phase diagram, with each phase featuring a distinct spin-texture pattern and symmetry class [2].
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condensate to Bardeen-Cooper-Schrieffer (BEC-BCS) crossover by solving the Bogoliubov-de Gennes (BdG) 
equations. The BdG equations describe fermionicquasiparticles which are essential for simulating topological ex-
citations such as solitons [1, 2] and vortices, since these objects have a width of the order of the inverse Fermi 
wavevector and contain localised Andreev states which play an important role in their dynamics [2]. Hence the 
calculations are extremely heavy and must be run in parallel on a supercomputer. Our latest simulations model the 

the unitary and BEC regimes, but becomes much slower in the BCS regime. The snake instability is also suppressed 
for grey solitons moving at a velocity close to the pair-breaking threshold. 

References
[1] R. G. Scott, F. Dalfovo, L. P. Pitaevskii and S. Stringari, , Phys. 

Rev. Lett. 106, 185301 (2011). 
[2] R. G. Scott, F. Dalfovo, L. P. Pitaevskii, S. Stringari, O. Fialko, R. Liao and J. Brand, The decay and collisions of dark solitons 

, New J. Phys. 14, 023044 (2012). 

Fermi gases Th-086

superconductors

Vladimir Kashurnikov and Andrey Krasavin*

 
*avkrasavin@gmail.com

The new World-Line Quantum Monte-Carlo Algorithm for the study of FeAs-based superconductors is sug-
gested. Properties of these superconductors can be described within the two-orbital model [1], the minimal model 
taking into account the crystal structure of FeAs-layers, and practically being the limit of complexity for realization 
of algorithms on numerical modeling of new superconducting compounds. The suggested coding of electron states 
allows of considering in the new algorithm the complex terms describing pair electron transitions between orbitals. 

and doping on local and non-local properties of FeAs-compounds.
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Ultracold Fermi gases near Feshbach resonances provide an unparalleled setting to obtain a precise understand-
ing of highly correlated many-body systems. These systems, characterised by short-range interactions and large 
scattering lengths, are challenging to describe theoretically and various approximate methods have been employed 
to make calculations tractable. Reliable experimental benchmarks are therefore a key requirement and progress is 
now demanding accuracies at the level of one percent. Here, we report on our precision experimental measurements 
of the dynamic and static structure factors of strongly interacting Fermi gases and the use of these to make the most 
precise determination of Tan’s universal contact parameter [1] in a unitary Fermi gas. Our results are compared with 
different theoretical predictions including Quantum Monte Carlo and many-body t-matrix methods. We also present 
our progress towards obtaining the homogeneous contact from measurements on a trapped gas. 
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We are developing a new apparatus dedicated to the cooling and trapping of mixtures of fermionic Lithium and 
Potassium atoms. The experiment will focus on low dimensional systems that can be achieved using tight optical 

to the ones observed in condensed matter systems as well as new exotic phases of matter. 
We report on recent results, including D1 sub-Doppler cooling of fermionic Lithium, the performance of the 

magnetic transport from the MOT chamber to the science cell and the improved vacuum system. 
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Since the experimental realization by the Berkeley group[1], Kagome optical lattice have been of great interest 
given the possibility to simulate geometrically frustrated systems and to realize exotic phases such as quantum spin 

-
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We investigate strong-coupling effects on single-particle properties of a p -
duced by a p-wave Feshbach resonance. This type of pairing interaction has been recently observed in 40K [1] and 
6Li [2] Fermi gases. Because of the splitting of three channels (px, py, and pz) of a p-wave Feshbach resonance by 
a magnetic dipole-dipole interaction [1], the phase transition from the px-wave pairing state to the p ip

x y
+ -wave 

Tc [3]. Near this ( )p
x

- ( )p ip
x y
+ -phase 

transition temperature (T
p ipx y+ py- and pz-component are-

expected to become strong even below Tc

single-particle density of states, as well as the spectral weight, in a one-component Fermi gas with a p-wave inter-
action below Tc. In this poster presentation, we show how the p
properties near T

p ipx y+ . 
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We study single-particle properties and strong-coupling effects in a trap of two-dimensional Fermi gases. In-
T-matrix approximation, as well as a trap potential within the local density ap-

Tc and Fermi chemical potential 
above Tc. Using these, we calculate the local density of states (LDOS), local spectral weight, and photoemission 
spectra above Tc. We show that the pseudogap inhomogeneously appears in LDOS near Tc, and it remains up to 
T ~ TF in the crossover region. We also demonstrate how the pseudogap phenomenon affects temperature depen-
dence of the photoemission spectra above Tc in the entire BCS-BEC crossover region. Our results would be useful 
for understanding low-dimensional strong-coupling effects in the BCS-BEC crossover regime of a trapped Fermi 
gas. 

 Th-092 Fermi gases

Yusuke Nakamura*, Yukirou Kuwahara, and Yoshiya Yamanaka

 

The thermalization process for the system of two-component Fermi gas is investigated in the framework of non-
equilibrium Thermo Field Dynamics (TFD) [1]. In nonequilibrium TFD, which is a real-time canonical formalism 

the pure state vacuum, called thermal vacuum. A number distribution is introduced as an unknown time-dependent 
parameter, and a self-consistent renormalization condition [2] derives its equation, i.e., the quantum transport equa-
tion [3]. In this poster, we derive the quantum transport equations for the system of weak interacting two-compo-
nent Fermi gas using nonequilibrium TFD, and illustrate the thermalization process of the nonequilibrium initial 
distribution. Our transport equation is not based on the phase-space distribution function, but follows from the 
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regime and by the bosonic collective excitations in the strong-coupling BEC regime. However, even after fermionic 

becomes zero.
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We investigate strong-coupling corrections to the spin susceptibility in an ultracold Fermi gas with an attrac-
tive interaction. In a population imbalanced system, the BCS-BEC crossover theory developed by Nozières and 
Schmitt-Rink (NSR) [1] is known to unphysically give the negative value of spin susceptibility in the crossover 
region [2,3]. This problem still remains even in the T-matrix theory. To overcome this serious problem, we extend 

T-matrix theory correctly 
gives the positive value of spin susceptibility in the entire BCS-BEC crossover region. We also show that our results 
well agree with the experimental results on spin susceptibility, measured by in situ imaging of dispersive speckle 
patterns [4]. 
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The implementation of an adjustable time phase difference into a two dimensional optical square lattice setup 
with nonseparable lattice potential allows us to excite a large fraction of bosonic atoms from the ground state into 
higher bands by means of a population swapping technique. The ensemble develops full cross dimensional coher-
ence with a lifetime of up to 150 ms. 

or complex-valued order parameters which break time reversal symmetry build up. Tuning the anisotropy within 
the lattice, we are able to map thephase diagram of the transition between this order parameters in the second band 
(P-band), which exhibits a mixed orbital structure of local S- and P-orbits. The experimental results are compared 
to a multi-band Bose-Hubbard model calculation, which takes into account next nearest neighbour tunneling and 
interaction effects. 
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We investigate the transport dynamics of a kicked Bose-Einstein condensate (BEC) in a 1D disordered potential 
generated by laser speckle. It is demonstrated that disorder has remarkable effects on transport behavior of a matter 

localized. We also analyze the momentum evolution and an unexpected new component appears in the momentum 
spectrum which is symmetric with the initial momentum. The new symmetric component induces the localization 
of the center of mass. In the case of the BEC in a quasi-periodic lattice, a similar phenomenon is also demonstrated 
numerically, however, the novel component of the momentum spectrum emerges asymmetrically.
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nearest neighbor tunneling. In addition, atom-photon coupling induces transitions between the two internal atomic 

-
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cluster states of ultracold fermionic atoms in an optical lattice [1]. To make this control precise, we treat Wannier 
orbitals in the ab initio manner. In our method, atoms in the lowest orbital are chosen as qubits, and the extra-Hilbert 
space that originates from higher orbitals serves as a controllable and accessible environment. By controlling the 

by performing measurements on states of the environment followed by post-selection depending on the resulting 
outcomes. Moreover, substantial advantages as regards scalability can be obtained by our pair-wise entanglement 

present method is applicable to generating one, two, and three dimensional (1D, 2D, and 3D) cluster states, and thus 
is suitable for fault-tolerant measurement-based quantum computation. 

Reference 



330 Th-099 Optical lattices

model

Sebastiano Pilati1,2,*, Ping Nang Ma2, Xi Dai3, and Matthias Troyer2

1. The Abdus Salam International Centre for Theoretical Physics, 34014 Trieste, Italy  
 

 
*spilati@ictp.it 

We investigate the properties of strongly interacting atomic gases in optical lattices, addressing the regimes of 
weak and intermediate optical potentials where the conventional description in terms of the single band Hubbard 
model is not reliable. 

In the case of bosonic atoms, we introduce a novel Monte Carlo technique [1] which allows to simulate the 

For fermions, we apply Kohn-Sham Density Functional Theory (DFT), which is the most powerful computa-
tional tool routinely used in material science. In this work, we use a new energy-density functional for repulsive 

-
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In the last years tremendous progress has been made in controlling and observing ultracold atoms in optical 
lattices. One of the latest developments has been the optical detection of atoms with single site resolution in lattices 
of increasingly smaller periodicity [1,2]. Along with these detection schemes comes the possibility to control the 
lattice potential with single-site resolution. 

We propose a scheme that makes use of these approved technologies to perform quantum computation in opti-
cal lattices. The qubits are encoded in the spacial wavefunction of atoms in the Mott insulator phase such that spin 
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atoms in optical lattices [1]. In these systems, higher-band processes and off-site interactions are important exten-
sions to the established and well-studied Hubbard model. We introduce dressed operators for the description of 
multi-orbitally renormalized tunneling, on-site, and so-called bond-charge interactions. Using an extended occupa-
tion-dependent Hubbard model, strong changes of the Mott transition for bosonic systems and Bose-Fermi mixtures 

continuously twisted between neighboring lattice site.
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Although quantum gases trapped by light represent a broad direction of modern research, the quantum prop-

both light and atomic motion is crucial, will lead to the observation of novel effects, beyond traditional physics of 
many-body systems trapped in prescribed potentials, e.g., optical lattices [1]. First, the light serves as a quantum 
nondemolition (QND) probe of atomic [1] or molecular [2] states. Second, due to the light-matter entanglement, 
the measurement-based preparation of many-body states is possible (number squeezed, Schrödinger cat states, 
etc.) [3]. Light scattering constitutes quantum measurement with controllable measurement back-action, allowing 
the dissipation tailoring. Third, in cavity QED with quantum gases, the self-consistent solution for light and atoms 
is required, enriching phases of atoms trapped in quantum potentials and strengthening quantum simulations [1].
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Ultracold atoms in optical lattices are an ideal system for the quantum simulation of condensed matter systems, 
offering high tunability of parameters in dissipation-free systems. With quantum gas microscopy, we are now able 
to initialize, manipulate and probe strongly-interacting many-body systems on a single-particle level.

report on microscopic studies of a quantum phase transition in antiferromagnetic Ising spin chains. We also pres-

thermal cloud until it Bose condenses.
This work opens new opportunities for the creation and study of strongly-correlated systems in optical lattices. 
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quench. In this theoretical work we consider the dynamics of the Bose Josephson junction (BJJ) for which exact 
results can be obtained. In particular, we show that following a sudden lowering of the tunneling barrier from the 
Fock to the Josephson regime the quantum system quickly relaxes towards the classical ergodic distribution. How-

proliferate in the many-body wave function following the quench [1]. Crucially, the BJJ is an integrable system. 
However, when impurity atoms are added it becomes classically chaotic and we investigate how this affects the 
long-time dynamics and ergodicity following a quench.
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Neutral atoms trapped in a two dimensional optical lattice have demonstrated to be a novel candidate for study-
ing interacting many-body quantum systems and creating quantum simulators. In recent years, a high resolution 
microscope system consisting of a solid immersion lens (SIL) and a high num-erical aperture objective lens was 
utilized to detect single rubidium atoms in a Hubbard-regime [1]. 171Yb is an promising candidate for a quantum 

with alkali atoms. We present an all optical method to load 174Yb atoms into a single layer of optical trap near the 
SIL. 5 × 105 atoms are cooled down to 2 K and then transported, using two crossed ODT, to a distance of 25 m 
under the SIL. After that, the optical accordion technique is used to create a condensate and compress the atoms to 
a distance of 1.8 
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Recent development of the spectroscopy by modulation of optical lattice potentials allows us to access excita-
tion structure of strongly correlated systems, [1] in which the created doubly occupied sites (doublons) number 
is measured. In the theoretical viewpoint, the doublon production rate (DPR) allows us to access to a correlation 
function of the kinetic energy. 

We discuss doublon excitations in spin-incoherent Mott insulators which are relevant to current experiments 
of fermionic atoms in optical lattice potentials. [2] To describe charge excitations in such a system, slave particle 
representation and diagrammatic approach based on non-crossing approximation under the assumption of a spin-
incoherent state are used, and the single particle spectrum function is estimated. Applying this formalism to the 

-
tatively good agreement is obtained. 
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Recent successes in site-resolved imaging and control of bosonic atoms trapped in optical lattices have enabled 
many new possibilities to emulate simple condensed matter systems. Many of the open questions in condensed 
matter, however, stem from the fermionic nature of electrons. Extending the high degree of control available with 
ultracold quantum gases in optical lattices to fermionic atoms will allow us to address these questions. The light 
mass of fermionic 6Li leads to system dynamics on fast timescales, making it an ideal candidate for such studies. 
We report progress toward a 6Li quantum gas microscope and present improved imaging, cooling, and trapping 
techniques compatible with the light mass of 6Li. 
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We have recently observed nanometer-scale atomic localization and matter-wave tunneling in a stationary 
optical lattice in a phase-stabilized magneto-optical trap(MOT) of 85Rb atoms[1]. We have extended the study 
to the case where the optical lattice is moving, which is realized by introducing a frequency difference between 
counter-propagating trap lasers. When the speed v of the optical lattice is much smaller than the mean oscillation 
velocity vosc associated with the lattice potential, most of the atoms were transported by the lattice while localized at 
the lattice potential minima and thus exhibiting a Rayleigh peak and Raman sidebands in the spectrum. However, 
when v is increased beyond vosc, Doppler-broadened spectral feature appeared and grew, indicating atoms were no 
longer localized. We measured the evolution of the spectrum with the increased lattice speed systematically. We 
will report the results so far, and analyze data with a simple model incorporating transitions among the vibrational 
states of the lattice potential.
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-
monic trap. Using a single adiabatic hyperspherical channel, we derive a transcendental equation whose solutions 
give the energy levels and decay rates of the trapped states. To gain a more physical interpretation of the results, we 

S-wave scattering 

| |a 4  (in agreement with prior work on free-space recombina-
tion), with higher-order corrections due to the trap. Moreover, the decay rate shows resonant enhancements due to 

proportional to the trapping frequency and exhibits log-periodic behavior.
Supported by the National Science Foundation. 
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In this paper we have demonstrated that the optical gradient echo memory is suitable for the coherent storage 
of images. We experimentally study the effect of atomic diffusion on the quality of an image stored in the long-
lived ground state coherence of a warm atomic ensemble. We show that the maximum spatial frequency that can be 

ability of this memory to store multiple images at the same time, allowing temporal and spatial multiplexed storage 
in an atomic vapor [1]. Finally, we would like to emphasize that this setup is perfectly adapted to be combined with 
recent experiments on the generation of squeezed states and entangled images [2] with four-wave mixing in a hot 
rubidium vapor. 
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InAs Quantum Dots (QDs) are ideal building block of quantum repeaters for its quantum emitting and spin-
coherence properties. The quantum information from a spin qubit can be transferred to the polarization of a photon. 
Using those features long-haul entanglement establishment among spin qubits can be potentially achieved. We have 
made progress on this spin-photon interface. We convert ~910 nm emitted photons from the QDs to ~1560 nm by 
frequency downconversion using Periodically Poled Lithium Niobate(PPLN) waveguides. A total system conver-

demonstrate ultrafast detection (< 10ps) of single photons, and preservation of second order correlation function 
during conversion process.
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We are implementing an adiabatic quantum computation (AQC) algorithm using neutral atoms trapped in 
optical tweezers with interactions mediated via the Rydberg blockade mechanism [1]. Adiabatic evolution offers 

‘simple’ Hamiltonian and then evolving adiabaticallyto the ‘problem’ Hamiltonian. Neutral atoms offer advantages 

basis), and also because they are highly isolated from the external environment. We control the adiabatic evolution 
-

ated by creating a Rydberg-dressed state [2] that, via Rydberg blockade, creates the necessary conditional shift. 
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A simple relationship between recently proposed measures of non-Markovianity and the Loschmidt echo is 
established, holding for a two-level system (qubit) undergoing pure dephasing due to a coupling with a many-

and occasionally back into the system. This, in turn, determines the non-Markovianity of the reduced dynamics. 

reasonable time truncation the qubit dynamics is shown to be Markovian exactly and only at the critical point. 
Therefore non-Markovianity is an indicator of criticality in the model considered here. 
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Many quantum communication protocols require entangled states of distant qubits which can be implemented 

Rb87 atomic ensemble is pumped by two laser beams (780nm and 776nm) resonant with the 5S P D  
transition. This generates time-correlated photon pairs (776nm and 795nm) by nondegenerate four-wave mixing 
via the decay path 5D P S
we observe a g(2)

was measured by a cavity (linewidth 2.8MHz) to be 21.4MHz for a MOT optical density of 26. 
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The technique of controlling the optical phase of a light pulse by another is called cross-phase modulation 
(XPM), and can be applied to implement controlled-phase gates and quantum entangled states. Although there are 
several proposed methods to enhance nonlinear optical effects at the single photon level, the interaction between 

-
ency (EIT) is one of the most promising technologies for achieving strong optical nonlinearities and the coherent 
manipulation of light. Here we experimentally demonstrate a novel scheme of XPM based on a phase-dependent 
double-Lambda atomic system. This work opens a new route to generate strong nonlinear interactions between 
photons, and may have potential for applications in quantum information technologies.
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We investigate and compare atomic cesium gases at room temperature and in a cold atomic cloud for their 
usability in quantum memory protocols based on the effect of electromagnetically induced transparency (EIT). In 
order to improve the storage and retrieval characteristics we have performed a detailed theoretical and experimental 

transition, we show that they modify the dynamics of EIT, but also permit for its customization. 
The model is applied and compared to our experiments. In the warm vapor, the targeted depletion of perturb-

into a magneto-optical trap, we demonstrated EIT based storage of orbital angular momentum in the single-photon 
regime. We also investigated an experimental witness recently proposed by P. M. Anisimov et al. that allows for 
disambiguation between EIT and Autler-Townes splitting. Again the full structure plays here an important role.
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We address the propagation of a single photon pulse with two polarization components, i.e., a polarization 
-

acteristic propagation effects for the phaseonium media with the controlled reversible inhomogeneous broadening 
(CRIB) technique to propose novel quantum information processing applications [1]. Since part of the incident 
pulse, i.e., the antisymmetric normal mode, uniquely determined by the preparation of the atoms in the phaseonium 

-
ward direction using the CRIB method. In this case, the system can be used as a quantum sieve or, considering both 
orthogonal modes, a tunable polarization qubit splitter. Moreover, we show that, by imposing a spatial variation of 

for the incident polarization qubit can be also implemented. 
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Hybrid quantum systems, which combine ultra-cold atoms with superconducting solid-state devices, have been 
proposed in the areas of precision sensing and quantum information processing. Such systems, exploit the rapidity 
of quantum logical operations performed by solid-state devices together with the long coherence time of atomic 
quantum superposition states. 

We report on the interaction of ultracold atoms and superconducting Niobium microstructures at 4.2 K. The 
atomic cloud is prepared and cooled to degeneracy on a superconducting atomchip. The interaction of the atoms 
with the superconducting trapping structure was observed both in a distortion of the trap due to the Meissner effect 
and in a suppression of the Johnson-Nyquist noise that manifests itseld in long trap lifetimes. We present recent 
Ramsey interferometry measurements of the coherence lifetime of atomic spin state superpositions trapped on a 
superconducting atomchip. 

As a further step towards the interaction of these two quantum systems, we recently implemented a hybrid trap 
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Trapped ions exposed to a magnetic gradient and manipulated with long-wavelength radiation exhibit an ef-
fective spin-spin interaction which is used to carry out CNOT gates with thermally excited ions using microwave 
radiation [1]. We characterize experimentally the spin-spin-coupling in strings of two and three ions and prove the 
dependence of this coupling on the trap frequency which can be used to create tailored coupling patterns relevant 
for quantum simulations. 

and coherence times up to about 1 s are achieved. At the same time, using dressed states eliminates carrier transi-
tions by interference and retains the magnetic gradient-induced coupling. Thus, fast quantum gates even with a 
small effective Lamb-Dicke-parameter are possible. This approach is generic and applicable also to laser-based 
gates as well as other types of physical qubits. 
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capable of storing quantum information for long times exceeding seconds is an outstanding challenge in quantum 
science and engineering. Here we report on the realization of such a stable quantum bit using an individual 13C 

-

13C qubit. Quantum memory lifetime exceeding one second is obtained by using dissipative optical decoupling from 
the electronic degree of freedom and applying a sequence of radio-frequency pulses to suppress effects from the 
dipole-dipole interactions of the 13C spin-bath. Techniques to further extend the quantum memory lifetime as well 
as the potential applications are also discussed. 
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Quantum communication requires transmission of quantum information over large distances. Photons are pre-
destined for such a task due to their inherent high mobility and low decoherence. Quantum information processing 
will require the ability to locally store and access quantum data [1]. For this photonic qubits are unsuitable. Their 
information needs to be transferred to a quantum memory. Gradient echo memories (GEM) have demonstrated stor-

-
lenge to utilising a memory based on GEM as with any atomic quantum memory is the vast difference between the 
spectral properties of the memory and the single photons It has been shown that the emission spectra of parametric 

generation of single photons from cavity enhanced PDC suitable for storage in a GEM memory. 
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optically-trapped atoms loaded from a GMOT can be transported and coupled to a SC resonator in a dilution re-

discuss experimental proposals for hybrid quantum systems.
This work is supported by ARO MURI award W911NF0910406, Fulbright, and the NSF Physics Frontier 

Center at the JQI.
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Recent progress have been done in the experimental preparation of quantum states designed for continuous 
variable quantum communication. States prepared with a combination of photon counting and homodyne measure-
ment showed high interest in this domain. Cat states have for instance been characterized a few years ago with this 

states is that their quality is not good enough to be used for quantum communication. In other words, the Wigner 
function is not negative enough. 

We propose here to show some ways to improve this quality. One of them concerns the spatial ratio of the beam 
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In this work, we demonstrate a procedure for engineering effective interactions between two modes in a bi-

The two effective Hamiltonians have a similar form of a beam-splitter and quadratic beam-splitter interactions, 
respectively. We shown that the nonlinear Hamiltonian can be used to prepare an entangled coherent state, also 
known as multidimensional entangled coherent state, which has been pointed out as an important entanglement 
resource. We also show that the nonlinear interaction parameter can be enhanced considering N independent atoms 

This work was supported by the Brazilian National Institute of Science and Technology for Quantum Informa-
tion (INCT-IQ) and for Semiconductor Nanodevices (INCT-DISSE), CAPES, FAPEMIG and CNPq. 
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Conventional laser cooling relies on repeated electronic excitations by near-resonant light, which constrains its 
area of application to a selected number of atomic species prepared at moderate particle densities. Optical cavities 
with a Purcell factor exceeding unity allow to implement laser cooling schemes using off-resonant light-scattering, 
which avoid the limitations imposed by spontaneous emission. Here, we report on an atom-cavity system, combin-
ing a Purcell factor around 40 with a cavity bandwidth(9 kHz) below the recoil frequency associated with the ki-
netic energy transfer in a single photon scattering event (14 kHz). This lets us access a yet unexplored fundamental 
quantum mechanical regime of atom-cavity interactions, in which the atomic motion can be manipulated by tar-
geted dissipation with sub-recoil resolution. We demonstrate cavity-induced heating of a of 87Rb Bose-Einstein con-
densate and subsequent cooling at particle densities and temperatures incompatible with conventional laser cooling. 
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According to the Purcell’s effect, the introduction of photonic crystal structures may change the electromag-
netic mode distribution and affect the spontaneous emission of active medium [1]. We employed the plane-wave 
expansion method together with a dipole model to study this phenomenon by calculating the local density of states 
(LDOS) of photons [2]. Although the photonic crystals are assumed two-dimensional for the ease of fabrication, the 
propagation of photons are allowed to be three-dimensional. We calculated the in- and off-plane LDOS for active 
medium embedded at various positions of the unit cell. Both LDOS are found to be position-sensitive and they may 

emission pattern of a photonic system such as a light-emitting diode [3].
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With single quantum systems controlled to encode elementary quantum bits (qubits) of information, a funda-
mental enhancement of computing and information security is now in reach. Particular attention is paid to QIP in 
linear-optics quantum circuits (LOQC) [1], which are in principle scalable to larger networks if it were not for the 
spontaneous nature of parametric down conversion (PDC) photon sources. 

Here, we demonstrate that single photons deterministically emitted from a single atom into an optical cavity [2] 

dividision of photons into several time bins of arbitrary amplitudes and phases is possible. In particular, in place 
of storing a simple qubit in one photon (being present or absent), the subdivision into d time bins is now used to 

quantum-homodyne measurements. 
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perienced by an atom near a dielectric body [1]. To understand experimental results it is necessary to consider 
realistic scenarios. We strive to understand the interplay between surface plasmon resonances,ambient temperature, 

et al. [2] indicated that 
a description of the atom-surface interactions should include the possible coupling between the atomic transitions 
and thermally excited surface polaritons (SP). We derive a quantum description introducing a nonlinear effective 
Hamiltonian in which the atom can couple resonantly to the SP modes of the dielectric material which leads to 
second-order energy exchanges with the atomic transition energy matching the difference in SP energies. 

References 
[1] S. Scheel and S. Y. Buhmann, Macroscopic quantum electrodynamics concepts and applications, Acta Phys. Slov. 58, 675810, 

2008. 
[2] H. Kübler, J. P. Shaffer, T. Baluktsian, R. Löw and T. Pfau,Coherent excitation of Rydberg atoms in micrometre-sized atomic 

vapour cell, Nature Photonics, 4, 112-116, 2010. 



Quantum optics… Th-129 345

pulses

Yimin Wang1,*, 1, Gabriel Hétet2, and Valerio Scarani1,3

1. Centre for Quantum Technologies, National University of Singapore, Singapore  
2. Institute for Experimental Physics, University of Innsbruck, A-6020 Innsbruck, Austria  

3. Department of Physics, National University of Singapore, Singapore  
*vivhappyrom@gmail.com 

Strong interaction between atoms and propagating light is important in quantum information processing, and 
remains as a current experimental challenge. First, we consider the interaction of a single two-level atom with quan-
tized light pulses propagating in free space. We show the dependence of the atomic excitation on (i) the state of the 
pulse and (ii) the overlap between the pulse waveform and the atomic dipole pattern [1]. A detailed study of atomic 
excitation with both n-photon Fock stateand coherent state pulses in various temporal shapes is presented. Second, 
we propose a quantum memory setup based on a single atom in a half cavity with a moving mirror [2]. We show 
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resonator. Such a system realizes a peculiar hybrid of strongly coupled matter and light waves. The condensate with 

side, a normal-superradiant phase transition can be observed that is analogous to that of the Dicke model [1,2]. One 

the decay into one-particle excitations. The different damping mechanisms change the character of the criticality 
of the phase transition. 

References 
[1] D. Nagy, G. Konya, G. Szirmai, P. Domokos, Phys. Rev. Lett. 104, 130401 (2010). 
[2] K. Baumann, C. Guerlin, F. Brennecke, T. Esslinger, Nature 464, 1301 (2010). 
[3] D. Nagy, G. Szirmai, P. Domokos, European Physical Journal D 48, 127 (2008). 



346 Th-131 Quantum optics…

Bi-Heng Liu1, Li Li1, Yun-Feng Huang1, Chuan-Feng Li1, Guang-Can Guo1,  
Elsi-Mari Laine2,*, Heinz-Peter Breuer3, and Jyrki Piilo2

1. Key Laboratory of Quantum Information, University of Science and Technology of China  
2. Turku Centre for Quantum Physics, Department of Physics and Astronomy, University of Turku  

3. Physikalisches Institut, Universität Freiburg  

Realistic quantum mechanical systems are always exposed to an external environment. The presence of the 
environment is often considered to give rise to a Markovian process in which the quantum system loses information 

information from the environment back to the open system, signifying the presence of quantum memory effects [1]. 

exploitation of reservoir engineering techniques require a method for distinguishing between diverse types quan-
tum noise by observing the open system only. We report an experiment in which we are able to control the environ-
ment and to monitor the noise through quantifying the non-Markovianity in the dynamics of the open system [2]. 
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We report on the realization of two quantum feedback schemes allowing for the preparation and stabilization of 

state. Coherent microwave injection into the cavity mode [1] or individual atoms resonantly emitting or absorbing 

-
fully corrected. 
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A promising approach to merge atomic systems with scalable photonics has emerged recently, which consists 

coupling between a single atom and photon in such a system [1]. Our approach makes use of collective enhance-

one can attain the “strong coupling” regime of cavity QED, wherein it becomes feasible to observe vacuum Rabi 
oscillations between a specially designated “impurity” atom within the cavity and a single cavity quantum. This 

novel correlations that arise in this system between light and atomic positions and momenta. 

Reference 
[1] D. E. Chang, L. Jiang, A. V. Gorshkov, and H. J. Kimble, , arXiv e-prints 1201.0643 (2012). 

Quantum optics… Th-134

N. Bezuglov1,2,*, A. Ekers1, J. Ruseckas3, V. Kudriašov3, and 3

1. Laser Centre, University of Latvia, Riga, Latvia  
2. Faculty of Physics, St. Petersburg State University, St. Petersburg, Russia  

3. Institute of Theoretical Physics and Astronomy, Vilnius University, Vilnius, Lithuania  

In the last decades there was an interest in superluminal light, that is light pulses with the group velocity larger 
than the speed of light in vacuum. Experimental and theoretical schemes were provided for realization of one-
component [1] andtwo-component [2] superluminal light pulses employing a gain media. In the scheme proposed 

suggest an alternative scheme for two-component superluminal light, which is an extension of the scheme proposed 

the gain doublets. 
This work was carried out within the EU FP7 Centre of Excellence FOTONIKA-LV, the EU FP7 IRSES Project 

COLIMA, a trilateral grant of Latvian, Lithuanian, and Taiwanese Research Councils. 
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We develop the theory of light propagation under the conditions of electromagnetically induced transparency 
in systems involving strongly interacting Rydberg states. Taking into account the quantum nature of light, we com-
pute the propagation of an arbitrary input pulse in the limit of strong Rydberg-Rydberg interactions. We also solve 
the case of a few-photon pulse for arbitrary Rydberg-Rydberg interaction strengths [1]. We show that this system 
can be used for the generation of nonclassical states of light including single photons and trains of single photons 
with an avoided volume between them, for implementing photon-photon gates, as well as for studying many-body 
phenomena with strongly correlated photons. 
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We report on our progress towards engineering a collective, non-Gaussian quantum state in an ensemble of 
dipole-trapped Cs atoms. Such states are an important prerequisite for continuous variable quantum information 
processing and can be a valuable resource for quantum metrology applications [1]. Our experimental apparatus is 

described in [2]. We start by preparing all atoms in the ↑ = = , =F m
F

4 0  clock state and apply a weak excita-
tion pulse, resonant with the F m F m

F F
= , = → ′ = , ′ = +4 0 4 1  transition. Conditioned on the detection of a single 

has been scattered into the lower ↓ = = , =F m
F

3 0  clock level and the collective quantum state of the example 

is now described by = ↑↑ ↑↓ ↑ ↑=∑ i

N

i

a

1
.  We then apply a microwave 

interfere with the remaining F = 4–atoms. By performing quantum non-demolition measurements of the atomic 
population difference in the clock-levels using a dispersive dual-color probing-scheme we obtain marginal statistics 
of the non-Gaussian Wigner function of this state and we compare our result with the Gaussian Wigner function of 
a coherent spin state. 
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Exciton-polariton condensates need to be continuously pumped due to their short lifetime of the order of pico-
seconds. This open-dissipative nature of the system is particularly important in the high density regime, bringing 

At high density, it has been a controversial issue of whether exciton-polariton BECs would undergo a crossover 
to photon lasing based on electron-hole plasma, or an electron-hole BCS-like phase [1-3]. In this work we discuss 
the property of the high density exciton-polariton BECs via two-time correlation function of an open system [4] tak-
ing into account of reservoir pumping and cavity, exciton loss. We consider a model where the lower polaritons are 

which more closely simulates the experimental situation where a pulsed excitation is used. 
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We consider a system of two optical cavities coupled via two-photon exchange [1]. Each cavity contains a 
single atom interacting with cavity photons with a two-photon cascade transition. Characterizing both particle en-
tanglement and spin squeezing by optimal spin squeezing inequalities, we examine their transfers between photonic 
and atomic subsystems for initially separable and entangled two-photon cases. It is observed that particle entangle-

squeezing interaction, induced by two-photon exchange, is revealed itself as engendering physical mechanism. The 
effect of the local atom-photon interactions on the trasfer of spin squeezing and entanglement is pointed out by be-
ing compared with the non- local two-photon exchange. 
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light pulses were made motionless and interacted with each other through a medium [1]. To demonstrate the en-

shows that motionless light pulses can activate switching at 0.56 photons per atomic absorption cross section. The 

improved by increasing the optical density of the medium. This work advances the technology of low-light-level 
nonlinear optics and quantum information manipulation utilizing photons.
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We report on the atom-like coherent control of a single self-assembled InAs quantum dot. In particular, we 

deterministically populates the biexciton state which then decays in a biexciton-exciton cascade. Full coherent 

an extension of the coherence time of an excitonic qubit with an all-optical echo technique.
The resonant creation of the photon pairs completely suppresses multi-photon emission which is a unique fea-

ture of this excitation scheme. Deterministic coherent excitation makes this system well suitable for schemes like 
time-bin entanglement or probabilistic interaction of the photons originating from dissimilar sources.
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Circuit Quantum Electrodynamics provides a new regime of cavity QED where interaction strengths are many 
times larger (> 1000) than system losses. Utilizing a superconducting transmon qubit, we are able to induce Kerr 
non-linearities in a three-dimensional cavity resonator which are 20 times larger than its characteristic cavity decay. 
This regime allows us to observe the apparent dephasing and subsequent refocusing of a coherent state due to the 
Kerr interaction. Throughout this process, the coherent state will naturally evolve into multi-component Schröding-
er cat states before refocusing. Using cavity state tomography, we are able to measure these non-classical states of 
light and observe coherent state revivals. 
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limit across multiple spatial sidebands. Four-wave-mixing in hot Rubidium vapour has previously been shown to 
generate twin beams that demonstrate quantum correlations in spatially correlated regions, that is to say quadrature 
entanglement between multiple transverse spatial modes [1]. The next step combines these beams in a single beam 
with quadrature squeezing across an equal number of transverse modes. Effectively, this means that the beam pres-

localy
-

plications of the generated multi-spatial-mode squeezed light, e.g. super-resolution imaging beyond the standard 
quantum limit. 
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An exciting frontier in QIS is the integration of quantum elements into quantum networks [1]. Single atoms 
and atomic ensembles endow quantum functionality and the capability to build quantum networks. Following the 

 215 nm 

trapping beams, differential scalar light shifts are eliminated, and vector shifts are suppressed by  250. We mea-
 = 5.7 ± 0.1 MHz for the Cs 6 4

1 2
S F/ , = 6 5

3 2
P F/ , ′ =  transition, where 

0  = 5.2  MHz in free space, and an optical depth of d  66, corresponding to d1  0.08 per atom. The band-

advances provide an important capability for quantum networks and precision atomic spectroscopy near dielectric 
surfaces. 
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-
ploys a linear array of ions trapped in a single harmonic well. Bosonic information can be encoded on the collective 
phonon modes of the trapped ions. Single mode operation is conducted by sideband transition; linear beam splitter 
can be implemented by Raman interaction. The second approach simulates bosonic modes by the motional modes 
of individually trapped ions. Single mode linear operators, nonlinear phase operator, and linear beam splitter can 
be simulated by precisely controlling the trapping potentials. All the processes in this approach can be conducted 
beyond the Lamb-Dicke regime. In both architectures, quantum information can be extracted by adiabatic transfer, 
post-selection, or sideband transition. Interesting linear bosonic phenomena, such as the Hong-Ou-Mandel effect, 
can be implemented by today’s technology.
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In a disordered potential, the diffusive transport of non-interacting particles can be inhibited by quantum in-
terference effects, a phenomenon known as Anderson localization [1]. In 3 dimensions, there exists a quantum 
phase-transition between localized (insulator) and diffusive (metal) dynamics. A long-standing question is the ef-
fect of interactions on such dynamics. We investigated this problem numerically using a “quantum simulator” of 
the 3D Anderson model, the quasiperiodic kicked rotor, recently used for precise experimental measurements of 

to the orthogonal universality class) to 1, characteristic of the self-consistent theory of the Anderson transition. For 
strong enough interactions, multifractality is transitorily suppressed. 
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Spin-orbit coupling brings distinctive character to Raman-dressed ultra-cold atom systems. In this work, we 
systemically study the decay behavior of a spin-orbit coupled Bose-Einstein condensate of 87Rb atoms prepared in 

single-atom spatial motion and two-atom collision. The agreement between experimental results and theoretical 
calculations strongly support the statement that the spin-orbit-coupling-induced decay is generally dominated by 
two-atom collisions. Our work would be helpful for both experimental simulations involving metastable dressed 
states and dark state with spin-orbit coupling. 
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naturally realizes such bands. In particular, we consider a generic two-dimensional lattice system of tilted, interact-
ing dipoles and demonstrate that such a system harbors single-particle bands with non-trivial topology as well as 
a quenched kinetic energy relative to the interaction scale. Moreover, we demonstrate that such systems naturally 

N (for all N  ℤ

polar molecules in optical lattices. 
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Eindhoven University of Technology, The Netherlands  

Ultracold atomic gases provide a rich playground for realising textbook examples of condensed matter phe-
nomena. A recent novel direction is the creation of crystalline structures of highly excited Rydberg atoms, which 
can be a model for dilute metallic solids with tunable parameters, and provide access to the regime of strongly 

Rydberg state shifts the energy levels of thousands of its neighbours out of resonance with the excitation laser. By 
careful shaping of the excitation laser pulse, we exploit the blockade effect and show how to create large, crystal-
line structures [1]. 
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-
tems loaded with ultra-cold atoms. In particular, we demonstrate a general mechanism of mass generation on the 
lattice and the apearance of pseudo-relativistic energy-momentum relation for quasi-particles, known for several 

-
eral Hubbard-like Hamiltonian systems, including also crystalline materials like graphene. We complete by giving 
examples in different geometric settings. 
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We have studied nD + nD multilevel pairwise interactions between Rydberg atoms in a magneto-optical trap, 

work, our goal is to study the nD + nD interaction in a higher density cold sample in a dipole trap. Therefore, we 
have loaded a QUEST trap for Rb using a CO2

2) around 
70 µm. For 75 W laser power, the QUEST depth is ~ 730µK and the density sample is arround 4 × 1011 3. 
The nD Rydberg states are excited using a CW blue light (480nm) with 1MHz of linewidth. During the presentation 

2 optical trap.
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The comprehension of interactions between cold Rydberg atoms plays an important role on quantum computing 

to decoherences [1] and anisotropies. Recently, our group has built a new setup to study Rydberg interactions using 

using a CW homemade second harmonic generation system at 480 nm. An elaborated system of metallic plates and 

-
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The formula a a B B B= + ∆ / −[ ]bg 1 0( )  is often used to describe the pole singularity of the scattering length a 
when a Feshbach resonance is tuned across the threshold of an atom-atom potential by varying the strength  of 

abg, 0  are to some extent inter- dependent and their relation to the 
underlying properties in the open and the closed channel is not clear. 
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abg ∈ −∞,+∞( )  is the scattering length of the uncoupled open channel; a  and b are invariant lengths depending 
only on the open channel’s potential tail; ER is the resonance position, which can be tuned, e.g. as function of , 
while Γ  is an energy-independent width due to the channel coupling. 
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Mixtures of alkali and spin-singlet atoms offer new studies of few- and many-body physics, and a starting point 
for producing paramagnetic polar molecules. We have recently produced quantum degenerate mixtures of lithium 
(alkali) and ytterbium (spin-singlet) atoms [1, 2]. Here we investigate a three-component mixture of bosonic 174Yb 
atoms and two resonantly-interacting, fermionic 6Li spin states. We observe dynamics of 6Li2 Feshbach molecule 

in the absence of Fermi statistics, with a dominance of elastic interactions at unitarity. In a separate study, we dem-
onstrate species-selective spatial control of 6Li and 174 -
gate differential gravitational sag in mass-imbalanced mixtures, and may realize a spatially-resolved, microscopic 
probe. Finally, we report on progress towards forming the paramagnetic polar molecule LiYb. 
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Atoms excited to Rydberg states are highly polarizable and, therefore, can interact strongly with each other at 
large distances, via dipole or van-der-Waals interactions. These interactions make them attractive candidates for 
studies of strongly correlated systems and the implementation of quantum logic gates. A key signature of interac-

investigated in a R bMOT. Because a quantum mechanical treatment containing the states of all the atoms in a MOT 
is not feasible, our results are analysed using an original theoretical model based on the well established Dicke 

Dicke collective states. This approach leads to a manageable size of the basis set for the simulations. The Dicke 

the measured variance of the Rydberg excitations. 
This work was supported by the E.U. through grant No. 265031-ITN-COHERENCE and the collaboration 

between University of Pisa and University of Paris Sud-11. 
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We present studies on cold and dense atomic 87Rb clouds containing N ~ 2 – 100 interacting atoms. We pro-
duced such mesoscopic ensembles by loading a microscopic optical dipole trap from a MOT. Due to 2-body light-

respect to a Poisson distribution. For N F = 0.72 ± 0.07 consistent with 
the value F N by a general stochastic model [1, 2]. To enhance interactions between the 
atoms, we are following two tracks. Firstly we evaporatively cooled a few hundreds of trapped atoms and obtained 
~ 10 atoms close to quantum degeneracy ( n

dB

3
1 ) in the microscopic trap. In this regime s-wave interactions 

dominate (n = 2 × 1014 at.cm–3). Secondly we sent near resonant light at a wavelength p on the small cloud (size l). 
When l < p , dipole-dipole interactions should lead to collective behaviour. 
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related to two-photon cooperative absorption, which is being presented in another contribution [1, 2]. The second 
effect is related to a new way of creating bound states using two-photon atom interaction. The idea is that during 

of a red (blue) detuned photon connecting the pair ground state (3S +3S ) to the attractive (repulsive) part of the 
quasi-molecular level (3S  + 3P -

the shape of the potential, we have studied the role of the attractive and repulsive channels present in the processes, 

References 

colliding cold Na”, Physical Review Letter. Not yet publish. 
[2] Kilvia M. Farias Poster.
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The resonant metastability exchange between co-propagating polarized metastable atoms Ar* (3P2, M = +2) and 
ground state atoms of a nozzle beam, at centre-of-mass energies ranging from 0.9 to 5 meV, is investigated using a 

effect of a Zeeman slower driven by an acousto-optic modulator. Very low centre-of-mass energies are accessible 
owing to the “kinematical contraction” usually realized in merging beam experiments [1,2]. Owing to a chopper 
disk holding 2 neighbouring slits, 2 successive packets F1, F2 of fast ground state atoms Ar (velocity v0) and 2 pack-
ets S1, S2 of slow metastable atoms Ar* (velocity v*) are prepared. The delay is such that atoms Ar of F2 overtake 
atoms Ar* of S1 before reaching the detector. The velocity of exchanged Ar* atoms passes from v* up to v0. The 

e e 
involves 2g and 2u molecular potentials of the Ar2* system [3].
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-
teractions in a mesoscopic ensemble. We propose an experiment to study the long range dipole-dipole interactions 
in the system working in the Rydberg blockade regime. The versatility of holographically generated 2D arrays of 
single atoms should allow us to achieve arbitrary geometries as well as site-to-site addressability, thus enabling the 
tunability of the interactions within the system. 
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induced transparency (EIT) in the 5S -5P  transition of the L-type system of the 87Rb atom. When the EIT was 
performed with the amplitude modulated probe laser, EIT spectra have been investigated as a function of the modu-
lation frequency. As the amplitude moduation frequency of probe laser increased from 1 kHz to 50 kHz, the modu-

modulation amplitude reduction in the EIT window could be understood as the Fourier transformation of intensity 
modulation to frequency modulation. When we analyzed the RF frequency of the amplitude modulated probe laser 
passing through the EIT medim using a RF spectrum analyzer, the modulation freqeuncy component was reduced 
via the dense EIT medium. In this presentation, we show that the dense EIT medium may apply to not only optical 
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-
scribed some years ago, which involves manipulating the atomic adsorption with light frequency near the D2 reso-
nance of an alkali vapor [1]. Nevertheless, the physical mechanisms have not yet been understood. We describe here 
systematic experiments to investigate this process at the atomic level. Our results indicate that resonant three-pho-

van der Waals forces. We hope those results will help improve lithographic techniques in a gaseous environment.
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[1] A. E. Afanasiev, P. N. Melentiev and V. I. Balykin, “Laser-Induced Quantum Adsorption of Atoms on a Surface”, JEPT Letters, 
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Molecules with non-zero magnetic and electric dipole moments are extremely interesting for novel applica-
tions in quantum informatics or experimental measurements of magnitude of eEDM. Obvious candidates for such 
molecules are mixtures of laser-coolable closed-shell atoms (eg. Yb) with open-shell atoms (alkali-metal atoms, 
Cr, lanthanides). Recently, a new mechanism which drives Feshbach resonances in systems like RbSr and LiYb 

∆ −≈res

res

10
5 ), which limits their application. This dramatically contrasts with the case dis-

cussed here. 
We present entirely new mechanism which might be much more promising for formation of paramagnetic, po-

lar molecules. We focus on mixture of ultracold Cr and Yb atoms. These atoms could form a molecules with huge 

B and dipole moment of 0.1-0.2 D. If both atoms approach each other, anisotropic spin-spin 
interaction appears in interaction-distorted Cr atom. Such effect can be as large as 0.5 cm–1 near Re (3.4 Å). This 

magnetically ground states of Cr atoms, for any isotopic mixture of CrYb). 
∆
res

res

 can be even 4 orders of 
magnitude larger than in alkali-metal atom – closed-shell atom mixtures. 
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We employ a continuum distorted wave (CDW) approximation with the correct kinematics to calculate the 

are unveiled and investigated, among them a vortex, akin to a deep minimum recently uncovered in the triple 
differential cross section for electron-atom ionization collision [1]. We also explore how this structure develops 
in the multidimensional continuum of the impinging positron, the emitted electron and the recoiling ion. Finally, 

Quantum Mechanics.
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We extend our previous work on ultracold reactive scattering of D + H2 [1] to study the role of resonances on 

resonances on the low energy behavior of cross sections for reactive scattering systems with reaction a barrier 
(e.g. Cl + H2, D + H2

entrance channel. For inelasticprocesses, including reactive ones, the anomalous energy dependence of the cross 
E . However, at vanishingly low energies, the standard Wigner’s threshold behavior 

E ) is eventually recovered, but limited to a much narrower range of energies. When the cross sections are 

K T, before recovering the Wigner re-
gime’s constant rate. 
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We investigate resonant dipole-dipole interactions between two Rydberg-blockaded atom clouds. The Rydberg 
blockade leads to collective states, sometimes called ’superatoms’, in which all atoms within a cloud share a co-
herent single Rydberg excitation. Recent articles [1-4] have demonstrated the potential of Rydberg aggregates as 
a medium for quantum transport. Here, we address the possibility to extend single atom sites to sites of Rydberg-
blockaded clouds. It is found that in such a setup the dynamics is akin to an ensemble average over systems where 
just one atom per cloud participates in entangled motion and excitation transfer, and no collective motion of all 
atoms occurs. The dipole-dipole interaction thus ’breaks up’ the superatoms by removing the excitations from the 
clouds. Collective motion of superatoms, however, becomes possible if additional coupling between ground state 
atoms is induced via far-detuned laser dressing. 
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We perform a relativistic analytical calculation of the second-order S-matrix element in the case of the elastic 
scattering photons from K-shell electrons using the Coulombian Green function method. We used the integral 

Green function given by Martin and Glauber [2]. Exact Dirac spinors for the bound K-shell electrons are considered 
for calculating the transition amplitudes. Thus, our analytical formulae for the angular distribution are relativistic 

)4 )7 for the imaginary part of the elastic scattering amplitudes. Our 
method is valid for any values of the photon energy, nuclear charge 
physical case. The relativistic angular distribution is rather simple, involving three Appell functions F1. The imagi-
nary part of the forward scattering amplitude also gives the photoeffect, pair production (via the optical theorem) 
and the electron capture (via the detailed balance principle) total cross-sections. 
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As dense samples of ultracold bi-alkali molecules are available, their association with an excited ultracold atom 
to create triatomic molecules is now under reach. We present a model for atom-molecule photoassociation (PA) 
based on the long-range multipolar interactions between the partners, which have been shown quite complex due 

investigate the long-range couplings between the various entrance channels of the process, and their effect on the 
energy level spectrum of the excited atom-molecule complex. A preliminary estimate for the PA is derived, based 

Possible ways to detect the atom-molecule association will be discussed. 
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Excited atoms, particularly those in metastable states, have large scattering cross sections. Thus, even if a small 
amount is present in a discharge environment, large scattering cross sections, high dipole polarizabilities, and low 
excitation and ionization potentials can dramatically affect the behavior of the discharge. In this work, the elastic S-

method [1, 2]. The method exploits the theory that two Hamiltonian operators having the same long-range potential 

is performed on the elastic scattering of electrons by a model potential. Then the stochastic variational method is 
e––He(23Se) system and the phase shifts of the elastic scattering are 

determined with the use of one-dimension potentials. 
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cell to a temperature of 5 K and detected via Fourier transform microwave spectroscopy (FTMW). Helium buffer 

molecule clustering, as expected in this unique, low helium density environment. This method offers comparable 

number sensitivity. It is also an attractive tool for quantitative studies of cold molecule-helium and molecule-mol-
ecule elastic and inelastic collisions at low energy. Possible adaptions of the technique are presented. These would 

13H10) observed here represents the largest cold 
gas phase molecule observed in a non-moving frame [1, 2]. 
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including quantum simulation, cold, controlled chemistry, and precision measurements. Here, we report the prog-
ress toward loading a very slow CaH molecular beam into a deep magnetic trap, by employing optical pumping 
techniques. A cold, slow CaH beam is produced from a two-stage buffer gas cell [1] and has a forward velocity of 

lens is used to focus the molecular beam to the 4T deep magnetic trap, locating at 30 cm from the source. When 
the molecules reach the trap area, we plan to apply two optical pumping lasers at the saddle point and near the trap 
center to achieve irreversible loading and magnetic deceleration. A Monte Carlo simulation indicates this loading 

-
ing is needed to achieve loading, this method is applicable to a wide range of magnetic molecules, including those 
without closed cycling transitions. Continuously loading to build up the molecular density is feasible. We plan to 
co-load CaH with Li atoms to study cold CaH-Li collisions and investigate the feasibility of sympathetic cooling 
of CaH [2]. 
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Cold molecules are set to provide a wealth of new science compared to their atomic counterparts [1], pre-
dominantly due to their vastly richer structure as a result of rotational and vibrational energy levels. Here we want 
to present preliminary results for cooling and trapping molecules in a permanent magnetic trap. By replacing the 
conventional buffer gas cell [2] with an arrangement of permanent magnets, we will be able to trap a fraction of 
the molecules right where they are cooled. For this purpose we have designed a quadrupole trap using NdFeB 
magnets, which has a trap depth of 0.4 K for molecules with a magnetic moment of 1 µB. Cold helium gas is pulsed 
into the trap region by a solenoid valve and the molecules are subsequently ablated into this and cooled via elastic 
collisions. First we will test the trapping arrangement with lithium atoms as they are easier to make. After having 
optimised the trapping and detection processes, we will use the same trap for YbF molecules. 

References 
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Rev. A 83, 023418 (2011).
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Accurate description of quantum degenerate molecular gases, that have been realized experimentally [1,2], 
constitutes a challenging task from theoretical point of view. Understanding of two body collisions is an essential 
step towards the full comprehension of such a system. We analyse the problem within the quantum defect theory [3] 
framework. Our calculations are in agreement both with ultracold s-wave limit [4] and high temperature classical 
regime. Finite temperature effects are described for the van der Waals interaction. Shape resonances contribution 
to reactive rates is discussed. We also develop a quantum analytical approximation for moderate and high energies, 
which predicts quantum corrections even for room temperatures.
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Interest in ultracold polar molecules has experienced tremendous growth in recent years, with potential ap-
plications reaching beyond those of ultracold atoms due to additional internal degrees of freedom and long-range 
dipole-dipole interactions. Developing methods to prepare the required ensembles of ultracold molecules has been 

Sisyphus-type cooling scheme for polar molecules. Molecules are cooled by more than a factor of 4 with an in-
crease in phase space density by a factor of 7. The scheme proceeds in an electric trap, and requires only a single 

molecules and can thus be extended to a wide range of molecule species. Ongoing improvements in our trap design 
will allow cooling to sub-mK temperatures and beyond, opening wide-ranging opportunities for fundamental stud-
ies with polyatomic molecules at ultracold temperatures. 
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the perspective of creating a quantum degenerate gas of ground-state molecules. We have calculated dynamic 

electronic transition dipole moments. We show that for particular wavelengths of the optical lattice, called “magic 
wavelength”, the polarizability of the ground-state molecule is equal to the one of the Feshbach molecule. As the 
creation of the sample of ground-state molecules relies on an adiabatic population transfer from weakly-bound 

favorably trapped by the lattice light, allowing optimal transfer in agreement with experimental observation. 
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Laser cooling is a simple technique routinely used to cool atoms down to temperatures in the mK range. As the 
presence of a closed transition is essential for the cooling to work, laser cooling is usually not tractable in molecules 
due to their complex structure. Molecules can rotate and vibrate and usually only scatter a few photons before they 
end up in a dark state. In particular, the molecule often changes a vibrational state in the absorption-emission cycle. 
Recently, a whole class of polar molecules (e.g. CaF, SrF, BaF and TiO) has been shown to possess a highly diago-
nal Franck-Condon matrix, which makes them viable candidates to be laser cooled.

We demonstrate a scheme for laser cooling of a supersonic beam of CaF and SrF radicals. The Franck-Condon 
factor for the relevant transition makes it possible for the molecules to scatter 104 photons with only one or two 
vibrational repump lasers. We show evidence of longitudinal slowing and cooling in CaF and beam brightening 
and cooling in SrF. 
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By combining molecular beam (MB) spectra with two distinct sets of ultracold molecule spectra (UM+ and 
UM–), we have successfully assigned the mutually perturbing A 1 +, 3 1 +, 1 1 3 +, and b 3

39K85Rb in the region 11,000-12,000 cm-1 above the ground state dissociation limit. The UMs are formed by radia-
+) state (UM+) or the 3(0-) state (UM–). For the 

MB spectra, cold 39K85Rb molecules were formed in the X 1 +

quite similar, except that the A and 3 1 + states can occur only in the UM+ spectra. The other three states occur in 
both the UM+ and UM– spectra. Similar investigations in other energy regions appear promising for characterizing 
perturbations all the way up to the dissociation limit. We also show that a multiplicative combination of MB and 
UM spectra, with an offset appropriate to the binding energy of the lower levels, can determine optimal paths for 
STIRAP, even when spectral assignments are not yet available. 
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We report on measurements and quantum calculations of 87Rb2 formation by pulses of frequency-chirped light 
on the nanosecond timescale. The experiment starts with cold atoms in a magneto-optical trap and uses frequency-
chirped photoassociation near the dissociation limit to produce excited molecules. Some of these molecules sponta-
neously decay into high vibrational levels of the ground state and are detected by pulsed-laser ionization. Our chirps 
typically sweep 1 GHz in 100 ns and the pulses are 40 ns wide. The time-dependent photoassociation is modeled 
by following the dynamics of the collisional wave functions on both ground-state and excited-state potentials in 
the presence of the chirped light. Because of the relatively long time scales involved, spontaneous emission from 
the excited state must be accounted for. Dependencies on pulse intensity and chirp direction will be presented. This 
work is supported by DOE. 
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ultradense atomic ensembles of alkali atoms at a few hundred bar of buffer gas pressure [1, 2, 3]. The cooled gas has 
a density of more than ten orders of magnitude above the typical values in Doppler cooling experiments of dilute 
atomic gases. In frequent collisions with noble gas atoms in the dense gas system, the energy levels of the alkali 
atoms are shifted, and absorption of far red detuned incident radiation becomes feasible. The subsequent spontane-

emitted photons have a higher energy than the incident ones, and the dense atomic ensemble is cooled. We here 
report on recent experiments of a Rb-noble gas mixture. For the future, we expect that redistribution laser cooling 
can also be applied to molecular gas samples. 
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Antihydrogen ( H ) atoms are produced via laser-controlled, two-stage charge exchange in a cryogenic 
Penning trap. 6x106 antiprotons ( p ) and 3 × 108 positrons (e+) are held in a nested well potential structure. Cs* at-
oms, produced via laser excitation within the cryogenic Penning trap travel, radially across the trap and through the 
e+ plasma to produce Ps*. The Ps* atoms are produced isotropically, with some atoms moving along the axis of 

the Penning trap and interacting with the cold p  via a second charge exchange to form potentially very cold H . 

H  formation is detected by comparing the p  annihilation counts with Cs excited to the Rydberg state to those 
obtained when the Cs remains in the ground state.
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Absorption imaging has played a key role in the advancement of science from van Leeuwenhoek’s discovery 

single atom isolated in vacuum through the absorption of photons resonant with the 370 nm S  to P  transition 
in Yb+ [1]. The optical properties of atoms are well understood making this system ideal for fundamental tests of 

system. The imaging resolution was on the order of the illumination wavelength, close to the best image resolution 
achievable [2]. The image contrast and resolution were far higher than previous work in single molecules [3] in 
which contrasts of only a few parts per million was obtained. Using this technique we will show work towards a 
single atom optical modulator which exploits the nonlinear saturation effect of atomic absorption. 
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We present Bose-Einstein condensation (BEC) of strontium by laser cooling. So far, every cooling method 
capable of reaching BEC in dilute gases, relied on evaporative cooling as the last, crucial cooling stage. Laser 
cooling to BEC has been strongly discussed middle of the ’90s, but the experimental capabilities of that time were 

a phase-space density of ~ 0.1. Further increase of the phase-space density is hindered by reabsorption of photons 
scattered during laser cooling. We have developed a method with which we can tune the atoms in a small spatial 
region of a laser cooled sample far out of resonance with the cooling light, overcoming this limitation. To support 
the sample against gravity, it is held in an optical dipole trap. To increase the density of the gas in the region where 
it is protected from cooling light, we locally create a deeper dipole potential, into which atoms accumulate by 
elastic collisions. BECs of 100 thousand atoms are created on a timescale of 100 ms. To demonstrate the cooling 
power provided by laser cooling, we repeatedly destroy the BEC by locally heating it and observe the formation of 

method in order to produce a continuous BEC.
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We present an all-solid-state laser source emitting up to 2.2 ,W of narrowband 671-nm light, frequency-locked 

4 ring laser emit-
ting at 1342 nm, with intra-cavity frequency doubling using periodically-polarized potassium titanyl phosphate 
(ppKTP).

The key issue for power scaling of the setup presented in [1] is the minimization of detrimental thermal effects 

4 by choosing and alternative pump wavelength as well as the crystal doping and length. Optimiza-
tion of the spatial overlap between the pump beam and the cavity mode resulted in an output power of 2.5 W of the 
non-doubled laser. We obtain mode-hope-free tuning over more than 6 GHz. Furthermore, we observe self-mode-
locking when detuning the phase-matching of the nonlinear crystal by adjusting the temperature of the crystal suf-

Reference 
[1] U. Eismann et al., , Appl. Phys. B 106, pp. 

25-36 (2012). 
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Trapping and manipulation of single atoms is one of the key elements in quantum optics and quantum infor-

However, the complexity and the size of the required optics makes integration and scalability quite challenging. 

lens. This simple pre-aligned system, placed inside a small all-glass vacuum cell, traps the atom in the collisional 
-

in order to get during the dark phase a free single-atom with no light shift and to avoid the generation of resonant 

single atoms as a single photon source with good indistinguishability and towards pursuing miniaturization and 
integration of our atom tweezers. 
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Ion traps allow controlled coherent interactions with individual particles over long periods and let ions form 
stable three dimensional crystals at low temperatures. For small numbers of ions the crystals form simple structures 
such as linear strings [1] and tetrahedral pyramids [2] but for larger numbers, the ions can be made to form regular 
crystalline structures [3]. Their shape is determined by the trapping frequencies and the magnitude of the magnetic 

-
lenges; we use a high frequency modulator to simplify the laser cooling in the presence large Zeeman splitting. 
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printed-circuit-board techniques. The trap has been loaded with up to a few thousand Sr+ ions in a three dimensional 
Coulomb-crystal regime. The analytical model of the pseudo-potential allowed us to determine the parameters 
that drive the trap into anisotropic regimes in which we obtain large (N > 150) purely two dimensional (2D) ion 
Coulomb crystals lying parallel to the surface of the substrate. Smaller single-layer crystal oriented in a plane or-
thogonal to the substrate have also been obtained. In both cases micromotion compensation along the three spatial 
directions improved crystal stability. The single layer character of these Coulomb crystals has been checked by 
using two independent imaging systems aligned along orthogonal directions. These crystals may open a simple and 
reliable way to experiments on quantum simulations of large 2D systems [1, 2].
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We are exploring a variety of schemes for the all-optical cooling and manipulation of clouds of atoms, using 

of 85Rb. By combining velocity-selective atom interferometry [1] with the multi-photon impulses achievable with 

[5, 6], our experimental studies aim to demonstrate cooling processes that impart impulses of many  between 
spontaneous events and are therefore both faster and less dependent upon spontaneous emission than conventional 

closed optical transition. 
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Gases of ultracold polar molecules offer exciting new possibilities in many areas, including precision measure-
ments [1], simulations of many-body quantum systems [2], and quantum information processing [3]. We aim to 
cool polar molecules by sympathetic cooling with ultracold atoms inside a suitable trap [4]. This poster presents 
our work on the production and transportation of a dense ultracold cloud of lithium for use as a refrigerant in 
sympathetic cooling. Upto 1010 lithium atoms are loaded from a Zeeman slower into a magneto-optical trap. Using 
a moving magnetic trap the atoms are transported to a separate chamber where they will later be co-trapped with 
molecules. We present the design of our setup and our recent results on transport. We also explore the possibility of 
electrically polarizing the lithium so that dipole-dipole interactions become important in the gas. 
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The knowledge of parameters in a magneto-optical trap is very important for doing improvements in a MOT 
which could be used in very amount of applications like spectroscopy of atoms in ultra-high resolution, atomic 
clocks and the study of Bose-Einstein condensate [1]. It also contributes to the study on highly excited state atoms. 
We have revisited some of these parameters in a MOT like the spring constant, capture and escape velocity [2], 
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We have used light assisted collisions to prepare an individual neutral atom in a red detuned optical microtrap. 
When using blue detuned assisted collisions we load single 85

design a process in which atoms are lost one by one by transferring energy through inelastic collisions and, at the 
same time, removing the excess of energy by laser cooling. The process ends when only one atom remains in the 

h from the D1 F = 2 to ′ =F 3  
transition. We are able to complete the process within a total preparation time of 542 ms. When red detuned light 
assisted collisions are used the process will be dominated by pair losses, thus increasing the probability of loading 
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The optical bichromatic force (BCF) relies on coherent momentum cycling to produce extremely large de-
celerations [1]. We demonstrate a prototype BCF slower for an atomic beam of metastable helium that can slow 

v
to slow atoms to MOT loading velocities. The key is to utilize a modest detuning of 100-200 MHz together with 

BCF is limited to ≲ 400 MHz. 
We also consider the application of BCF slowing to molecules, for which the BCF could serve as a very useful 

“force multiplier” that allows many stimulated cycles during each radiative lifetime. We show that for the near-
cycling A X and X v
repumping laser [2]. Experimental tests are underway, with NSF support. 
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The study of the dynamics of the ions inside an Electrostatic Ion Beam Trap (EIBT) [1] shows that the stability 
of the trapping is ruled by a Hill’s equation. This result suggests that an EIBT can be analogous with a quadrupolar 
trap. We show how to plot stability diagrams for the EIBT, which is similar to the Ince-Strutt diagram of quadrupo-
lar traps. The parallelism between these two kinds of traps is illustrated by comparing experimental and theoretical 
stability diagrams of the EIBT. The main difference with quadrupole traps is that the stability depends only on the 
ratio of the acceleration and trapping electrostatic potentials, and not on the mass or the charge of the ions. All 
kind of ions can be trapped simultaneously and since parametric resonances are proportional to the square root of 

obtained with various ions show good agreement with the theory. We also present experimental observation of both 
parametric and high-order motional resonances, predicted by the model. We currently study how to combine such 
a trap with a Paul trap to decelerate and store ion beams with a kinetic energy of a few keV. 
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Trapping and guiding atoms close to surfaces is an open challenge that can potentially lead to miniaturized 
atom-chip devices and strong atom-photon coupling, among its many other applications.  The current techniques 
are limited by background scattering and weak trapping potentials that can be easily overcome by surface forces at 
short distances. Here, we propose a new scheme that leverages the strength of surface forces to make an atom trap 
in the presence of an external drive. To achieve this, we take a two level atom out of equilibrium by weakly driv-
ing it to the excited state close to a half-dielectric space with Drude-Lorentz model for permittivity. The material 

r3 
potential leading to a position dependent detuning of the drive as a function of the atom-surface distance. We show 
that dressing the atom in presence of a position dependent detuning gives a trap potential close to where the atom 
is resonantly excited which goes as the Rabi frequency of the laser. 
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The Hartree energy shift is calculated for a unitary Fermi gas [1]. By including the momentum dependence of 

also for spin-imbalanced systems allows calculation of polaron properties. The results are in good agreement with 
more involved theories and experiments. 
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For a system of two identical fermions and one distinguishable particle interacting via a short-range potential 

continuous scaling invariance. We point out that a third type of trimers, “crossover trimers”, exist universally re-
gardless of short-range details of the potential [4]. These crossover trimers have neither the discrete nor continuous 
scaling invariance. We show that the crossover trimers continuously connect the discrete and continuous scaling 
regimes as the mass ratio and the scattering length are varied. We identify the regions for the Kartavtsev-Malykh 

scattering length by investigating the scaling property and model-independence of the trimers.
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We propose a new all-optical method to image individual Rydberg atoms embedded within dense gases of 
ground state atoms [1]. The scheme exploits interaction-induced shifts on highly polarizable excited states of probe 
atoms, which can be spatially resolved via an electromagnetically induced transparency resonance. Using a realistic 
model, we show that it is possible to image individual Rydberg atoms with enhanced sensitivity and high resolu-

imaging method to study blockade effects and correlations in the distribution of Rydberg atoms optically excited 
from a dense gas, applicable in current experiments. Furthermore this new imaging scheme could be extended to 
other impurities such as ions, and is ideally suited to equilibrium and dynamical studies of complex many-body 
phenomena involving strongly interacting particles. 
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-
acting three-dimensional systems when there is a two-body bound state at zero energy has generated a large amount 
of interest in the cold atomic gas community after its initial observation in 133Cs [2]. The theoretical description of 
these experiments have thus far used the vacuum formalism. However, current experiments are in a regime where 

can be probed in current experiments [3]. 
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[3] N. G. Nygaard and N. T. Zinner, 
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In this work, combining the Bethe ansatz approach with the variational principle, we calculate the ground state 
energy of the relative motion of a system of two fermions with spin up and down interacting via a delta-function 
potential in a 1D harmonic trap. Our results show good agreement with the analytical solution of the problem, and 
provide a starting point for the investigation of more complex few-body systems where no exact theoretical solu-
tion is available. 
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molecules

Mickaël Hubert and Timo Fleig
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Coupled Cluster (CC) response theory is an established means of calculating electronically excited states of 
atoms and molecules. Recently, some of us have presented a new Relativistic General Active Space CC method 
of general order in a 4-component spinor-based framework. We here present the initial implementation of the CC 
Jacobian for obtaining excited-states energies based on e.g., relativistic CCSD, CC(42), CCSDT, CC(43), CCSDTQ, 
etc. up to FCC wavefunctions. We furthermore present an initial application to the Silicon atom and some homo-
logues of the pnictogene hydride AsH, SbH and BiH. It is demonstrated that with the new method the experimental 

LRCC, we here present a progress report on the implementation of a commutator-based CC Jacobian. 
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The incorporation of a magneto-optical resonance as a magnetically tunable, frequency-selective element in 

however, the nonlinear Zeeman effect can cause shifting and splitting of this frequency, resulting in systematic er-
rors. Here, we present theoretical and experimental progress toward an understanding of the dynamics and stability 
of such a resolved multi-line system in an anti-relaxation-coated 87Rb vapor cell. 
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2 line of ru-
bidium and show that these signals can be described very precisely by a theoretical model which is based on 

vector of the linearly polarized laser radiation. Resonances are observed at the crossing points of the excited state 
m=2, where m is the magnetic quantum number associated with the excited state total 

angular momentum F. In contrast to previous studies [1], precise agreement with theory and experiment are now 

been improved. Measured signals and results from calculations are presented for different values of the laser power 
density and frequency.
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Graeme Walker1, Aidan S. Arnold2, and Sonja Franke-Arnold1

 

the transfer of phase structure from near-infrared pump light to coherent blue light in a four-wave-mixing process 

pumping 85Rb with 780 nm and 776 nm pump lasers at two-photon resonance while minimising Kerr lensing [1]. 

excitation amplitudes. These results have implications on the inscription and storage of phase information in atomic 
gases. 
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A technique for complete population transfer between the two end states 1  and 3  of a three-state quantum 
system with a train of N pairs of resonant and coincident pump and Stokes pulses is introduced [1]. A simple ana-
lytic formula is derived for the ratios of the pulse amplitudes in each pair for which the maximum transient popula-
tion P2(t) of the middle state 2  is minimized, P N

2

max  = sin2 ( N). It is remarkable that, even though the pulses are 
on exact resonance, P2(t) is damped to negligibly small values even for a small number of pulse pairs. The popula-

N and stimulated Raman adiabatic passage for large N and 
therefore this technique can be viewed as a bridge between these well-known techniques. 
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We report experimental and theoretical results for the scattering effects on free falling dilute atomic clouds 
that traverse a microscopically structured laser beam with parabolic symmetry. The dynamics of the phase space 
distribution is studied. As proposed in Ref. [1], the atomic clouds were observed to split into two or more clouds 

of main propagation of the laser beam with the linear momentum along one of the directions perpendicular to that 
axis is directly transmitted from the light beam to the atomic cloud. 
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atoms in inert buffer gases using degenerate four-wave mixing technique has been demonstrated [1]. It has been 
shown experimentally that the angular response of the degenerate four-wave mixing signal results in the direct 

 excited state of rubidium in the presence of helium buffer gas 
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7. The 

-
formation of high-l state (product state) after the excitation of 49S Rydberg states in cesium magneto-optical trap. 

we suppose that the product state signal mainly comes from the l-mixing and avoided crossing between initially 

preparing nS state, nS atoms will nonadiabaticly transit to the product state through avoided crossing points. Fur-
thermore, by applying two identical electric pulses we obtain the oscillation behavior of population between 49S 
and product states, which can be tuned through altering the widths of two pulses. The mothed can be implemented 
to control the population of different states.
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We investigate the effects caused by an external oscillatory excitation in a Bose-Einstein condensate of 87Rb 

oscillatory BEC creates new exciting experimental possibilities and provides explanations of recent performed 
experiments on quantum turbulence by oscillatory excitation [1]. 
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Magneto-optical resonances have been largely studied during the last century being an excellent method to 
investigate the properties of atoms and molecules, light beams and them interactions. We report on magneto-optical 

-

resonance [1] and to eliminate dead-zones and heading errors in alkali vapor magnetometers by simultaneous exci-
m

magnetometer with an intrinsic frequency reference. 
We thank our colleagues, the mechanics and the electronics pool of the Physics Department. This project is 

supported by SNF-Ambizione (grant PZ00P2_131926) and by the Pool de Recherche (UniFr). 
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-
cally monitoring the precession of polarized alkali spins. Magnetometer sensitivity is independent of measure-

detection. Unlike SQUID-based sensors, atomic magnetometers require no cryogens, so they can be embedded 
into portable sensor arrays, such as those used in oil well logging operations. In this work, we use an atomic mag-

with potential applications in petrochemical analysis and oil well logging.
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based on their common interaction with a nano-mechanical resonator in a superconducting circuit. We show that, by 
employing state-of-the-art opto-electro-mechanical devices, one realizes an effective source of (bright) two-mode 
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Color centers can be considered as trapped molecules in solids and they have emerged as promising candidates 
for many applications involving the access and manipulation of quantum degrees of freedom. Applications such as 

require a detailed understanding of the electronic properties of defects in solids. Here we will discuss how the sym-

of the nitrogen-vacancy defect [1] and other centers, and their response to external perturbations such as radiation, 

implementation of the above mentioned applications. 
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Experiments were performed to characterise an extreme-ultraviolet (XUV) interferometer formed by placing 
dual gas targets successively in a few-cycle laser focus. XUV is emitted via the nonlinear high-order harmonic 
generation (HHG) process in each target and varying the position of the target in the focus controls the relative 
phase between these emissions. Observations have been made on several harmonics from the plateau to the cut-off 
regions as the gas target separation, and hence relative phase, is varied. The physical mechanism behind the phase 
delay is understood with a semi-classical interpretation of the HHG process [1] and is predominantly found to arise 
from a time delay in the electron recombining due to the Gouy phase. The Gouy phase has the role of shifting the 
carrier-envelope phase of the few-cycle pulse as the beam passes through a focus [2]. This interferometric apparatus 
has an unprecedented precision; the timing resolution of the electron recombination delay has been measured to 
better than 100 zeptoseconds.
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Optical vortices have attracted considerable attention in the past decade due to applications such as optical 
spanners, super resolution imaging, and entangled quantum states in quantum optics. We are interested in investi-

broadband Raman sidebands in Raman-active crystals with the goal of synthesizing few cycle femtosecond pulses 
as well as arbitrary waveforms. In particular, we have recently realized the coherent transfer of OAM in the selec-
tively excited Raman transitions in a PbWO4 crystal by using a pair of time-delayed linearly chirped pulses. This 
work was supported by the Welch Foundation (No. A1546) and the NSF (No. 0722800). 
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We present results of a timing analysis of the process of two-electron photo-ionization of the hydrogen mol-
ecule. Time dependent Schrödinger equation (TDSE) for the hydrogen molecule in presence of the laser pulse is 
solved numerically [1]. Projecting solution of the TDSE on the suitably prepared wavepacket states representing 
two electrons in continuum, we can study motion of ionized electrons in time. Unlike the simpler case of photo-
ionization of the helium atom [2], timing analysis of the photoionization of hydrogen molecule reveals a more 
complicated picture, where details of the electron motion depend on the angles between velocities of the escaping 
electrons and molecular axis. Study of the angular dependence of the time-delays reveals features which can be 
interpeted as signatures of knock-out mechanism at work in the process of double photo-ionization of H2 molecule. 
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We investigate theoretically a pump and probe laser atom setup. Similar to a recent proposal [1] we use a single 
strong laser pulse in resonance between the initial ground state with an excited state. The laser serves as a pump 

the same laser pulse probes the electron by ionizing it through a concurrent multiphoton process. As expected the 
above threshold ionization peaks split up in Autler-Townes doublets. We focus on an interference process we have 
detected in-between each doublet by numerically solving the time dependent Schrödinger equation. We propose a 
theory that explains both quantitative and qualitatively the ionization spectrum. The theory is based on a Demkov’s 

-
tion is modeled by the coherent bound state obtained by solving the close-coupling equations accounting for decay 
towards the continuum.
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above-threshold ionization (ATI) in laser-irradiated molecule of car-
bon fullerene C60 is addressed theoretically within the velocity-gauge (VG) formulation of molecular  
approximation (SFA) [1]. Our VG-SFA calculation results demonstrate a high suppression in C60 ionization as 

eV). 
In particular, for nm fs
ionization of C60 has been found to reach saturation at laser peak intensity I 14 cm2. that is in a perfect 
consistence with the respective value found in relevant experiment [2].
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Rotating ultracold quantum gases have been a recurrent subject of interest over the last years. In this work, we 

show that, at low temperature, quantum contributions to the angular momentum emerge. These contributions are 
analogues of the de Haas - van Alphen oscillations in the solid-state context. 
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We have implemented a long-term frequency stabilization system for external cavity diode laser (ECDL) based 
on mode boundary detection method. In this system, the saturated absorption spectroscopy was used. The current 
and the grating of the ECDL were controlled by a computer-based feedback control system. By checking any mode 
boundaries in the spectrum, the control system determined how to adjust current to avoid mode hopping. This pro-
cedure was executed periodically to ensure the long-term stabilization of ECDL in the absence of mode hops. This 

This technique is very useful in some applications such as high stability of laser power. 
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We investigate the photonic properties of cold atomic samples that are trapped in a one-dimensional (1D) opti-
cal lattice. The atoms build a 1D periodic structure and such an arrangement is expected to create a photonic band 

have studied the intrinsic limitations of such systems [1]. We also combined this system with electromagnetically-
induced transparency, which allowed us to obtain a tunable and spectrally very narrow atomic Bragg mirror [2]. 

In a following experiment, we induced gain (by an appropriate pumping mechanism) in the atomic grating. The 

atom-based mirrorless laser [3], a topic of high current interest in the photonics community. 
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Drawing on an analogy with the powerful technique of composite pulses in quantum optics [1] and polarization 
optics [2,3] we present a broadband optical diode (optical isolator) made of a sequence of ordinary 45° Faraday ro-
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spin degrees of freedom, in a one-dimensional optical cavity. The two internal modes of the condensate atoms are 

the cavity mode. When the pump laser is far detuned from its resonance atomic transition frequency, an effec-
tive nonlinear optical model of the cavity-condensate system is developed under Discrete Mode Approximation 

-
malized magnetization demonstrate bistable behavior (multistability) under certain conditions for the laser pump 
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Laser photodetachment threshold (LPT) detection and laser photodetachment microscopy (LPM) are presently 

32S) is now known to 
be 1 675 297.53(41) m-1 or 2.077 104 0(6) eV, which is the record in accuracy and even makes it possible to inves-

1 629 727.6(9) m-1, or 2.020 604 6(11) eV [2].
Both LPT and LPM techniques, however, most easily apply when photodetachment releases an electron s-

wave. Today’s challenge is to apply photodetachment microscopy to the case of p-wave photodetachment, which 
would introduce an additional degree of freedom in the electron interferograms.
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